3 CLOSED SESSION

MOTION TO CLOSE THE MEETING AT 9.09AM

Moved by: Cr M Edwards Seconded by: Cr P Bishop

That the meeting be closed to the public under section 72(1) of the Local Government (Operations) Regulation 2010 to discuss the following item:

3.1 Bunker Road Structure Plan

The reason that this is applicable in this instance is as follows:

(h) other business for which a public discussion would be likely to prejudice the interests of the local government or someone else, of enable a person to gain a financial advantage.

CARRIED

MOTION TO REOPEN MEETING AT 9.56AM

Moved by:Cr M ElliottSeconded by:Cr P Bishop

That the meeting be again opened to the public

CARRIED

3.1 BUNKER ROAD STRUCTURE RLAN

Dataworks Filename:

Responsible Officer:

CUR Rlanning – Bunker Road Precinct Plan

Carly Photinos Manager City Planning & Environment

Author:

Alan Milijkovic Strategic Planner

EXECUTIVE SUMMARY

A confidential report from Manager City Planning & Environment was discussed in closed session:

PROPOSED MOTION

Moved	68:	
Secon	ded)

Cr W Boglary Cr M Elliott

That Council resolve as follows:

To adopt the proposed changes to the draft Bunker Road Structure Plan and required Redlands Planning Scheme amendments as detailed in Attachment 2 suggested by the first State interest review for the purposes of ministerial approval; and

2. That the draft Bunker Road Structure Plan and associated proposed amendments, Attachments 2 and 3, remain confidential until:

- a) Written agreement from the Minister confirming that Council may proceed to public notification;
- b) All landowners within the structure plan area have been given prior notification; and
- c) Council proceeds to public notification and a call for submissions.

On being put to the vote the motion was LOST.

DIVISION

FOR: Crs Boglary, Ogilvie and Elliott.

AGAINST: Crs Hardman, Edwards, Williams, Beard, Bishop and Tail

Crs Hewlett and Gleeson were absent from the meeting.

COMMITTEE RECOMMENDATION

Moved by:	Cr K Williams
Seconded by:	Cr P Bishop

That Council resolve as follows:

- 1. To defer making a decision on the draft Bunker Road Structure Plan to the Environment and Planning Committee scheduled for 8th August 2012 where the committee can:
 - a) Exercise it with the delegated authority to make a formal decision on the matter; and
 - b) Allow Councillors to seek further clarification on the matter to occur prior to that committee date.
- 2. That the draft Bunker Road Structure Plan and associated proposed amendments Attachments 2 and 3, remain confidential.

CARRIED

DIVISION

FOR:

Crs (Hardman, Edwards, Williams, Beard, Bishop and Talty.

AGAINST: Cre Boglary, Ogilvie and Elliott

Crs Hewlett and Gleeson were absent from the meeting.

12.3 CLOSED SESSION AT COMMITTEE

The Committee meeting was closed to the public under section 72(1) of the *Local Government (Operations) Regulation 2010* to discuss the following item, and following deliberation on this matter, the Committee meeting was again opened to the public.

12.3.1 BUNKER ROAD STRUCTURE PLAN

Dataworks Filename:

LUP Planning – Bunker Road Precipct Pla

Responsible Officer:

Gary Photinos Manager City Planning & Environment

Author:

Alan Milijkovic Strategic Planner

EXECUTIVE SUMMARY

A confidential report from Manager City Planning & Environment was discussed in closed session at Committee.

PROPOSED MOTION AT COMMITTEE

Moved by:Cr W BoglarySeconded by:Cr M Elliott

That Council resolve as follows:

- 1. To adopt the proposed changes to the draft Bunker Road Structure Plan and required Redlands Planning Scheme amendments as detailed in Attachment 2 suggested by the first State interest review for the purposes of ministerial approval; and
- 2. That the draft Bunker Road Structure Plan and associated proposed amendments, Attachments 2 and 3, remain confidential until:
 - a) Written agreement from the Minister confirming that Council may proceed to public notification;
 - b) All landowners within the structure plan area have been given prior notification, and
 - c) Council proceeds to public notification and a call for submissions.

On being put to the vote the motion was LOST.

DIVISION

FOR: () Fors Boglary, Ogilvie and Elliott

AGAINST: Crs Hardman, Edwards, Williams, Beard, Bishop and Talty

Crs Hewlett and Gleeson were absent from the meeting.

COMMITTEE RECOMMENDATION/ COUNCIL RESOLUTION

Moved by:	Cr J Talty
Seconded by:	Cr M Edwards

That Council resolve as follows:

- 1. To defer making a decision on the draft Bunker Road Structure Plan to the Environment and Planning Committee scheduled for 8th August 2012 where the committee can:
 - a) Exercise it with the delegated authority to make a format decision on the matter; and
 - b) Allow Councillors to seek further clarification on the matter to occur prior to that committee date.
- 2. That the draft Bunker Road Structure Plan and associated proposed amendments Attachments 2 and 3, remain confidential.

CARRIED (en bloc)

Resolution Memo

Subject	BUNKER ROAD STRUCTURE PLAN
Dataworks File	LUP Planning – Bunker Road Precinct Plan
Date	27 July 2012
From	Office of Chief Executive Officer
То	Gary Photinos – Manager City Planning & Environment

General Meeting Minutes of 25 July 2012, Item No. 12.3/ Teres

The following is the resolution on this item:

COMMITTEE RECOMMENDATION/ COUNCIL RESOLUTION

Moved by: Cr J Talty Seconded by: Cr M Edwards

That Council resolve as follows:

- 1. To defer making a decision on the draft Bunker Road Structure Plan to the Environment and Planning Committee scheduled for 8th August 2012 where the committee can:
 - a) Exercise it with the delegated authority to make a formal decision on the matter; and
 - b) Allow Councillors to seek further clarification on the matter to occur prior to that committee date.
- 2. That the draft Bunker Road Structure Plan and associated proposed amendments Attachments 2 and 3, remain confidential.

CARRIED (en bloc)

This is now forwarded to you for action in accordance with the resolution.

Susan Rankin Interim Chief Executive Officer

1.3 BUNKER ROAD STRUCTURE PLAN

Dataworks Filename:LUP Planning - Bunker Road Precinct PlanResponsible Officer:Gary Photinos

Manager City Planning & Environment

Author:

Alan Miljkovic Strategic Planner

EXECUTIVE SUMMARY

At the General meeting of 25 July 2012, Council resolved to deter making a decision on the draft Bunker Road Structure Plan until the Environment and Planning Committee meeting scheduled for 8 August 2012 to allow Councillors to seek further clarification prior to making a decision.

This report seeks to confirm Council's decision to defer the planning for the Bunker Road Emerging Urban Communities (EUC) area.

PURPOSE

The purpose of this report is to confirm deferral of detailed planning for the Bunker Road Structure Plan until after adoption of the new planning scheme. The new planning scheme will identify the Victoria Point local development area in the strategic framework to align with the South East Queensland Regional Plan (SEQRP). Once the new planning scheme is adopted, planning for the Victoria Point local development area, incorporating the detailed planning for Bunker Boad, will be undertaken.

BACKGROUND

Past Council Decisions

The draft Bunker Road Structure Plan was first presented to Council at the General Meeting on the 14 December 2011 (item No. 15.5.1), the Council resolved the following:

- 1. To adopt the drate Bucker Road Structure Plan and required Redland Planning Scheme (RPS) amendments for the purposes of first State interest review;
- 2. That the draft Bunker Road Structure Plan and associated proposed amendments to the RPS remain **confidential** pending written agreement from the Minister confirming that Redland City Council may proceed to public notification:

The Bunker Road Structure Plan was to remain confidential to allow consultation with individual property owners in the area prior to publicly releasing the Structure Plan.

At the General meeting of 25 July 2012, Council resolved to defer making a decision on the graft Bunker Road Structure Plan until the Environment and Planning Committee meeting scheduled for 8 August 2012 to allow Councillors to seek further clarification prior to making a decision.

It has since been proposed that the Bunker Road Structure Plan be deferred until after adoption of the new planning scheme. Planning for the Bunker Road Structure Plan can then be combined with planning for the Victoria Point local development area on Double Jump Road (identified by the South East Queensland Regional Plan 2009-2031). Planning for this area will only commence once there has been substantial uptake of the South-east Thornlands and Kinross Road development areas and so will be undertaken after commencement of the new planning scheme.

The Bunker Road Structure Plan was therefore withdrawn from the Environment and Planning Committee meeting of 8 August 2012 with a fresh recommendation coming before the current meeting.

ISSUES

The Bunker Road Structure Plan

Location

The Bunker Road Structure Plan area comprises those properties zoned Emerging Urban Community (EUC), and consists of 27ha of land over nine properties on the southern side of Bunker Road, Victoria Point. The Bunker Road EUC is located approximately 2km south-west of the Victoria Point Major Activity Centre.

Planning context

The subject area is a remnant of the Special Planting Intent Area No.5 which was identified in the 1998 Redland Shire Strategic Plant that plan stated: "...Bunker Road is considered to be suitable for urban residential purposes. Areas to be retained for conservation, public open space, buffers for existing poultry farms and drainage purposes are to be determined at the time a development application is received". The balance of the SPI5 area which had not been developed at the time that the 2006 planning scheme came into force became EUC pened.

The EUC zone under the RPS requires Council to prepare a Structure Plan and amendment to the RPS prior to any development taking place. The Bunker Road EUC is included within the Urban Footprint under the South East Queensland Regional Plan 2009-2031 (SEQRP) and is a small component of the larger Victoria Point local development area on Bunker Road, which has the potential to accommodate future urban development.

The draft Local Growth Management Strategy (LGMS) identified this larger Victoria Point local development area as a major potential greenfield development area, and anticipated that together the areas could provide approximately 600 dwellings. The LGMS also recognised that planning of these areas must address conservation, open space and drainage issues.

A decision to defer planning in this area will not have a substantial long term planning effect. There is currently no demonstrated need for the land to be released for urban growth purposes. The current EUC zoning will control development in the area until a detailed plan is put into place.

RELATIONSHIP TO CORPORATE PLAN

5 Wise planning and design

We will carefully manage population pressures and use land sustainably while advocating and taking steps to determine limits of growth and carrying capacity on a local and national basis, recognising environmental sensitivities and the distinctive character, heritage and atmosphere of local communities. A well-planned network of urban, rural and bushland areas and responsive infrastructure and transport systems will support strong, healthy communities.

FINANCIAL IMPLICATIONS

A decision to defer the Bunker Road structure plan will not have any financial implications on Council.

PLANNING SCHEME IMPLICATIONS

Deferring the Bunker Road Structure Plan will have no immediate effect on the RPS. Future planning for the Victoria Point local development area will result in amendments to the new Planning Scheme.

CONSULATION

The Mayor, Divisional Councillor and senior Council officers were consulted in the preparation of this report.

OFFICER'S/COMMITTEE RECOMMENDATION

Moved by:	Cr P Gleeson
Seconded by:	Cr P Bishop

That Council resolve as follows:

- 1. To suspend the current planning processes for preparation of the Bunker Road Structure Plan (EUC zoned area);
- 2. That the Bunker Road EUC area be recognised as part of the planning for the broader Victoria Point local development area within the new planning scheme;
- 3. Undertake the planning for the Victoria Point (including Double Jump Road and Bunker Road) at an appropriate time after the adoption of the new Redlands Planning Scheme and
- 4. That the Minister for State Development, Infrastructure and Planning be advised in writing that council does not intend to proceed further with the Bunker Road Structure Plan and will include the area in a wider planning study for Victoria Point at a later date.

CARRIED (unanimo

Crs Williams and Boglary were not present when this motion was put. Cr Elliott was absent from the meeting.

12.1.3 BUNKER ROAD STRUCTURE PLAN

Dataworks Filename: LUP Planning - Bunker Road Precinct Plan

Responsible Officer: Gary Photinos Manager City Planning & Environment

Author:

Alan Miljkovic Strategic Planner

EXECUTIVE SUMMARY

At the General meeting of 25 July 2012, Council resolved to defer making a decision on the draft Bunker Road Structure Plan until the Environment and Planning Committee meeting scheduled for 8 August 2012 to allow Councillors to seek further clarification prior to making a decision.

This report seeks to confirm Council's decision to defect the planning for the Bunker Road Emerging Urban Communities (EUC) area.

PURPOSE

The purpose of this report is to confirm deferral of detailed planning for the Bunker Road Structure Plan until after adoption of the new planning scheme. The new planning scheme will identify the Victoria Point local development area in the strategic framework to align with the South East Queensland Regional Plan (SEQRP). Once the new planning scheme is adopted, planning for the Victoria Point local development area, incorporating the detailed planning for Bunker Road, will be undertaken.

BACKGROUND

PAST COUNCIL DECISIONS

The draft Bunker Road Structure Plan was first presented to Council at the General Meeting on the 14 December 2011 (Item No. 15.5.1), the Council resolved the following:

- 1. To adopt the draft Bunker Road Structure Plan and required Redland Planning Scheme (RRS) amendments for the purposes of first State interest review;
- 2. That the draft Bunker Road Structure Plan and associated proposed amendments to the RPS remain **confidential** pending written agreement from the Minister confirming that Redland City Council may proceed to public notification;

The Bunker Road Structure Plan was to remain confidential to allow consultation with individual property owners in the area prior to publicly releasing the Structure Plan.

At the General meeting of 25 July 2012, Council resolved to defer making a decision on the draft Bunker Road Structure Plan until the Environment and Planning Committee meeting scheduled for 8 August 2012 to allow Councillors to seek further clarification prior to making a decision. It has since been proposed that the Bunker Road Structure Plan be deferred until after adoption of the new planning scheme. Planning for the Bunker Road Structure Plan can then be combined with planning for the Victoria Point local development area on Double Jump Road (identified by the South East Queensland Regional Plan 2009-2031). Planning for this area will only commence once there has been substantial uptake of the South-east Thornlands and Kinross Road development areas and so will be undertaken after commencement of the new planning scheme.

The Bunker Road Structure Plan was therefore withdrawn from the Environment and Planning Committee meeting of 8 August 2012 with a fresh recommendation coming before the current meeting.

ISSUES

The Bunker Road Structure Plan

Location

The Bunker Road Structure Plan area comprises those properties zoned Emerging Urban Community (EUC), and consists of 27ha of land over nine properties on the southern side of Bunker Road, Victoria Point. The Bunker Road EUC is located approximately 2km south-west of the Victoria Point Major Activity Centre.

Planning context

The subject area is a remnant of the Special Planning Intent Area No.5 which was identified in the 1998 Redland Shire Strategic Plan. That plan stated: "...Bunker Road is considered to be suitable for urban residential purposes. Areas to be retained for conservation, public open space, buffers for existing poultry farms and drainage purposes are to be determined at the time a development application is received". The balance of the SPI5 area which had not been developed at the time that the 2006 planning scheme came into force became EUC zoned.

The EUC zone under the RPS requires Council to prepare a Structure Plan and amendment to the RPS prior to any development taking place. The Bunker Road EUC is included within the Urban Footprint under the South East Queensland Regional Plan 2009-2031 (SEQRP) and is a small component of the larger Victoria Point local development area on Bunker Road, which has the potential to accommodate future urban development.

The draft Local Growth Management Strategy (LGMS) identified this larger Victoria Point local development area as a major potential greenfield development area, and anticipated that together the areas could provide approximately 600 dwellings. The LGMS also recognised that planning of these areas must address conservation, open space and crainage issues.

A decision to defer planning in this area will not have a substantial long term planning effect. There is currently no demonstrated need for the land to be released for urban growth purposes. The current EUC zoning will control development in the area until a detailed plan is put into place.

RELATIONSHIP TO CORPORATE PLAN

5. Wise planning and design

We will carefully manage population pressures and use land sustainably while advocating and taking steps to determine limits of growth and carrying capacity on a local and national basis, recognising environmental sensitivities and the distinctive character, heritage and atmosphere of local communities. A well-planned network of urban, rural and bushland areas and responsive infrastructure and transport systems will support strong, healthy communities.

FINANCIAL IMPLICATIONS

A decision to defer the Bunker Road structure plan will not have any financial implications on Council.

PLANNING SCHEME IMPLICATIONS

Deferring the Bunker Road Structure Plan will have no immediate effect on the RPS. Future planning for the Victoria Point local development area will result in amendments to the new Planning Scheme.

CONSULATION

The Mayor, Divisional Councillor and senior council officers were consulted in the preparation of this report.

OFFICER'S/COMMITTEE RECOMMENDATION/

Moved by: Cr J Talty Seconded by: Cr M Elliott

That Council resolve as follows:

- 1. To suspend the current planning processes for preparation of the Bunker Road Structure Plan (EUC zoned area);
- 2. That the Bunker Road EUC area be recognised as part of the planning for the broader Victoria Point local development area within the new planning scheme;
- 3. Undertake the planning for the Victoria Point (including Double Jump Road and Bunker Road) at an appropriate time after the adoption of the new Redlands Planning Scheme; and
- 4. That the Minister for State Development, Infrastructure and Planning be advised in writing that council does not intend to proceed further with the Bunker Road Structure Plan and will include the area in a wider planning study for Victoria Point at a later date.

CARRIED (en-bloc)

Resolution Memo

То	Gary Photinos – Manager City Planning & Environment 🖉 🏑
From	Office of Chief Executive Officer
Date	2 November 2012
Dataworks File	LUP Planning – Bunker Road Precinct Plan 🔥 🖉 👔
Subject	BUNKER ROAD STRUCTURE PLAN

General Meeting Minutes of 31 October 2012, Item No. 12.13 reters.

The following is the resolution on this item:

OFFICER'S/COMMITTEE RECOMMENDATION/ COUNCIL RESOLUTION

Moved by:	Cr J Talty
Seconded by:	Cr M Elliott

That Council resolve as follows:

- 1. To suspend the current planning processes for preparation of the Bunker Road Structure Plan (EUC zoned area);
- 2. That the Bunker Road EUC area be recognised as part of the planning for the broader Victoria Point local development area within the new planning scheme;
- 3. Undertake the planning for the Victoria Point (including Double Jump Road and Bunker Road) at an appropriate time after the adoption of the new Redlands Planning Scheme; and
- 4. That the Minister for State Development, Infrastructure and Planning be advised in writing that council does not intend to proceed further with the Bunker Road Structure Plan and will include the area in a wider planning study for Victoria Point at a later date.

CARRIED (en-bloc)

This is now forwarded to you for action in accordance with the resolution.

Susan Bankin Interim Chief Executive Officer

MAKE A EDENCE MAKE IT COUNT Workshop 22 November 2016 Victoria Point Local Development Area

Note: Workshop presentations and discussions are confidential

Content

- Purpose
- Proposed Development
- Victoria Point Local Development Area
- Structure Plan

Note: Workshop presentations and discussions are confidential

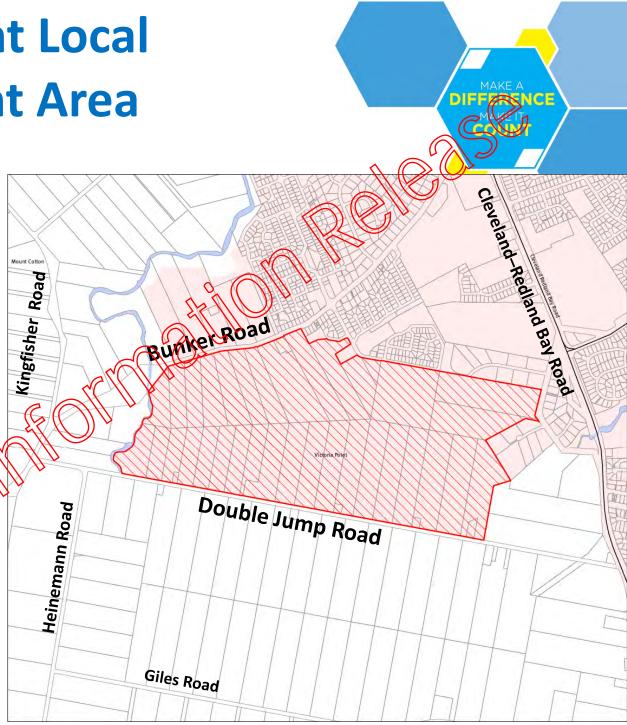
Proposed Development

 Reconfiguring a Lot for 1 into 289 lots and 7 balance lots - March 2015

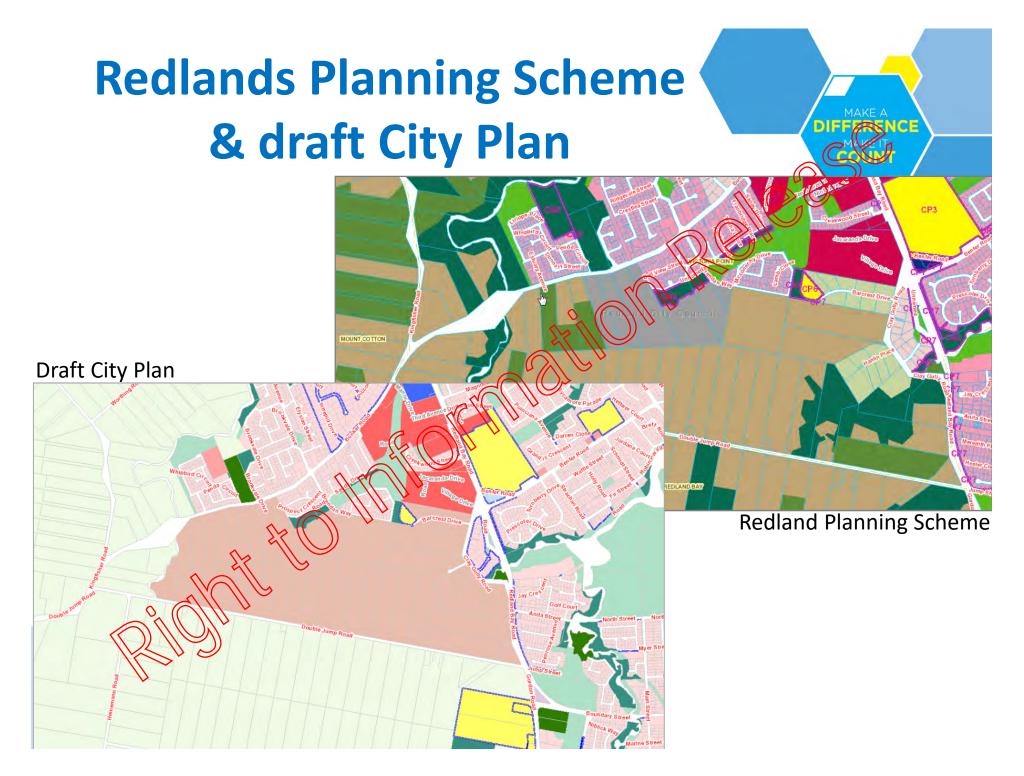
- later reduced to 263 residential lots

Request for further information (structure plan)
 – February 2016

discussions are confidential


- Response received in November 2016
- 4 week period of community consultation commences tomorrow

Proposed Development


Victoria Point Local Development Area

- Where is it and what is it?
- Designated by the South East Queensland Regional Plan 2009 alongside South East Thornlands and Kinross Road
- Within the Urban
 Footprint

What is a local development area?

- South East Thornlands and Kinross Road
- Focus for accommodating regional dwelling and employment targets
- Comprehensive planning to co-ordinate development with infrastructure delivery

Structure Plan process

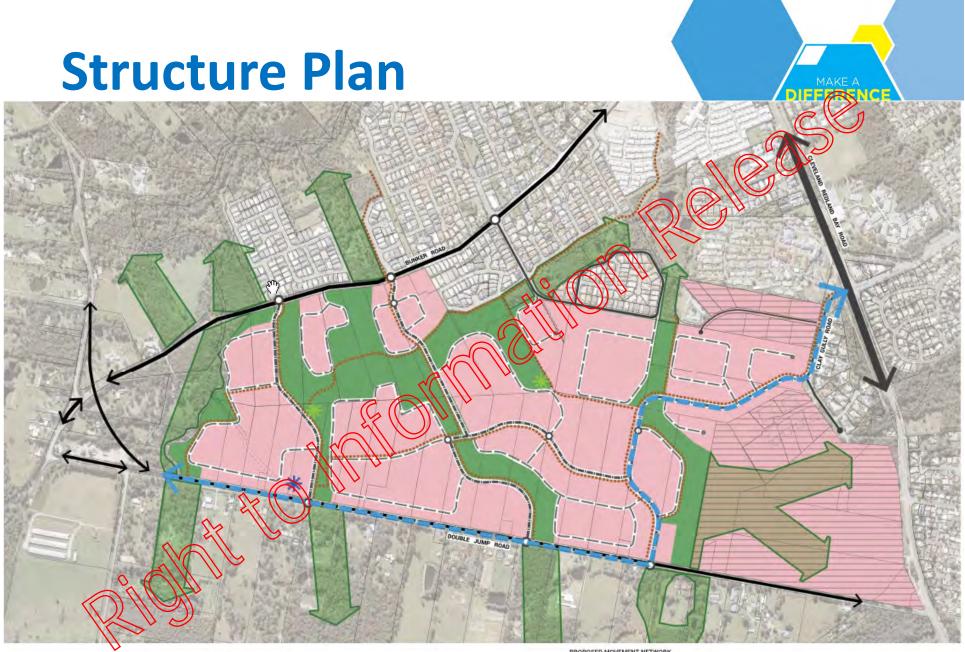
- SEQ Regional Plan
 - Planning of development areas to be led by councils, developers or the State government
 - Analysing the area and its context
 - Consideration of Council and State policies and requirements
 - Examining infrastructure needs, staging, timing and funding
 - Plans can be: 📢
 - Prepared formally as a Structure Plan where the Minister has declared the area a Master Plan area
 - Prepared informally and then used as a basis for submitting a planning scheme amendment or development application

Note: Workshop presentations and discussions are confidential

Structure Plan process

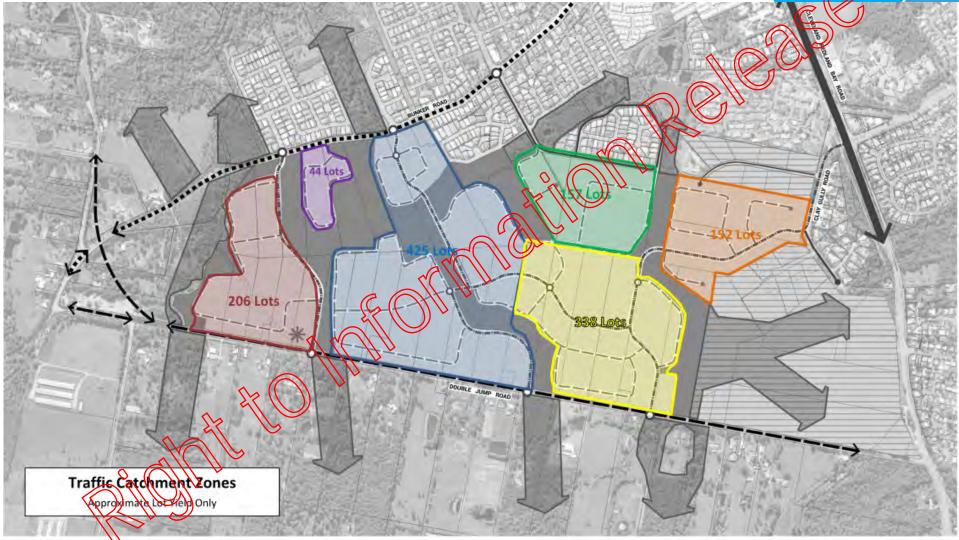
- Draft City Plan
 - Emerging Community Zone code identifies that a structure plan is required before development can proceed in the zone (but not before an application can be made)
 - Emerging Community Zone code and planning scheme policy details the work that must be undertaken to underpin a Structure Plan

Structure Plan

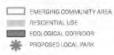

Structure Plan area: 176 hectares / 62 Lots

PRELIMINARY STRUCTURE PLAN

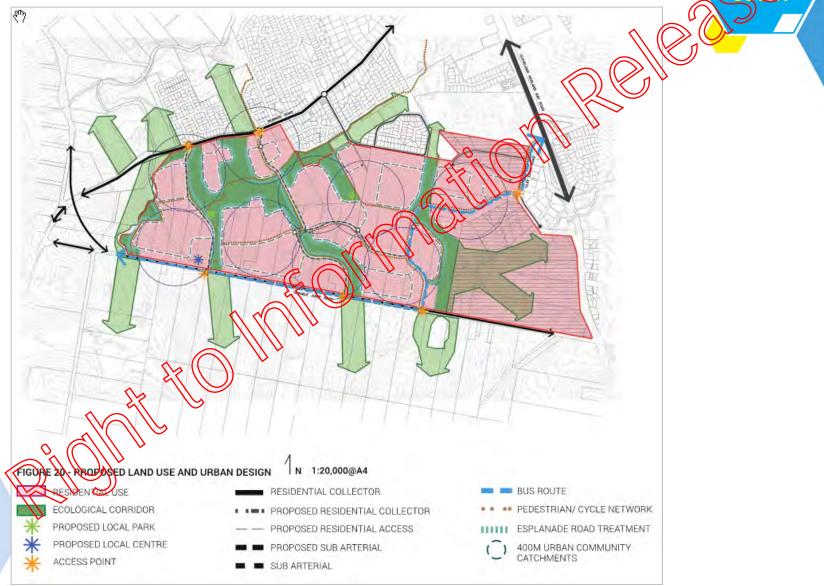
PROPOSED TRUNK COLLECTOR
 PROPOSED RESIDENTIAL COLLECTOR
 PROPOSED RESIDENTIAL ACCESS
 SUBJECT TO FURTHER INVESTIGATION



PROPOSED MOVEMENT NETWORK



Density: 12-15dph / 1400 – 1800 dwellings


PRELIMINARY STRUCTURE PLAN

PROPOSED LOCAL CENTRE
 PROPOSED SUB ARTERIAL
 SUB ARTERIAL
 RESIDENTIAL COLLECTOR

PROPOSED TRUNK COLLECTOR
 PROPOSED RESIDENTIAL COLLECTOR
 PROPOSED RESIDENTIAL ADCESS
 SUBJECT TO FURTHER INVESTIGATION

Local park / open space catchments

Corridors and fauna crossings

PROPOSED HABITAT CORRIDORS FAUNA CROSSING POINTS

1 1

Poultry Industry

Supporting Technical Information

- Environmental Advice
- Traffic Impact Assessment
- Engineering and Infrastructure Report

Note: Workshop presentations and discussions are confidential

What does this all mean?

- The proposed development
 - Planning Assessment and State officers will consider the structure plan in the context of the proposed development
 - Officers will present to councillors again following a detailed review of the structure plan, with recommendations on whether further work/advice may be necessary
 - The application is called in, therefore officers will bring the recommendation to a separate workshop for decision
- The Structure Plan options:
 - Consider adopting the Structure Plan, pending the officer detailed review and recommendations:
 - Council could decide it is happy for Ausbuild to undertake the consultation and no further consultation is necessary
 - Council eould decide to undertake a separate consultation on the Structure Plan prepared by Ausbuild

- Council could seek to undertake a separate Council-led structure plan process

Note: Workshop presentations and discussions are confidential

Note: Workshop presentations and discussions are confidential

Questions?

Jill Driscoll

From:Janice JohnstonSent:Monday, 30 October 2017 1:31 PMTo:Janice JohnstonSubject:FW: ROL005912 Clay Gully Road subdivision - officer advice following applicant presentation

Janice Johnston Senior Planner - Strategic Planning Redland City Council Ph. 3829 8971

From: Janice Johnston
Sent: Tuesday, 18 July 2017 11:39 AM
To: Janice Johnston
Subject: FW: ROL005912 Clay Gully Road subdivision - officer advice following applicant presentation

Met with Steve, David and Emma on 18 July.

Agreed that strategic would stay involved in the current assessment of Ausbuild's application, but would wait and see what Fitini supply in terms of a structure plan before we go ahead and do our own (given it sounds like fitini are doing a very thorough investigation so no point us doing the same thing concurrently)

Janice Johnston Senior Planner - Strategic Planning Redland City Council Ph. 3829 8971

From: Stephen Hill Sent: Wednesday, 5 July 2017 11:31 AM To: Emma Martin Cc: Janice Johnston Subject: RE: ROL005912 Clay Gully Road subdivision - officer advice following applicant presentation

Hi Emma

Just to let you know the proposed PMO project and associated budget to undertake a structure plan over the Victoria Point LDA this financial year has been approved. Over the next few weeks we will need to finalise a detailed project plan and work through how and when we commence this work and how and if ye can best integrate this work with the various developer lead structure plans currently being prepared for this area.

Steve

Stephen Hill

Acting Manager City Planning and Assessment Redland City Council Cnr Bloomfield and Middle Streets PO Box 21 | Cleveland Qld 4163 To 3829 8232 Mobile 0417617097 Stephen.hill@redland.qld.gov.au

From: Emma Martin Sent: Thursday, 29 June 2017 4:10 PM

Page 32 of 184

To: Jill Driscoll Subject: FW: ROL005912 Clay Gully Road subdivision - officer advice following applicant presentation

Kind regards

Emma Martin A/Principal Planner **City Planning & Assessment (**07) 3829 8556

From: Emma Martin Sent: Wednesday, 21 June 2017 5:21 PM **To:** Cr Lance Hewlett Cc: Kim Peeti; Louise Rusan; David Jeanes; Andrew Veres; Andrew Chesterman Subject: RE: ROL005912 Clay Gully Road subdivision - officer advice following applicant presentation

Dear Councillor,

4. RCC led consultation on the structure plan prior to making a decision

ret well It is my recollection that David Jeanes was referring to consultation that Council would undertake prior to adopting a structure plan not necessarily prior to making a decision on this subdivision. Regardless of this, it's important to clarify that even if the subdivision is approved the structure plan would not be an approved plan, it would not therefore apply over the development area. It has been prepared to demonstrate to Council that the proposal is appropriate and orderly development, that the necessary infrastructure upgrades have been identified and planned for and that the development does not prejudice the appropriate and orderly development of adjoining land. On this basis I do not think it is incumbent on Council to undertake community consultation in order to be in a position to make a decision, however Councillors may wish to. It is important to remember that even if Council does not undertake consultation on the structure plan prior to making a decision on this application, it still has the opportunity to consult the community prior to a structure plan being formally adopted.

If you have any other questions on this application or the Fiteni application at Double Jump and Bunker roads (ROL006166) please let me know.

Kind regards

Emma Martin A/Principal Planner City Planning & Assessment

From: Cr Lance Hewlett Sent: Tuesday, 20 June 2017 11:42 AM To: Emma Martin Cc: Kim Peeti; Louise Rusan; David Jeanes; Andrew Veres Subject: Clay Gully

HI Emma,

Also, we were advised by David Jeanes in a previous workshop that there would be extensive Council run consultation of the entire structure plan. I assume this will be undertaken in due course as the community strongly expects it, especially given the recent purchase of the truck business and adjoining chook farm for a large over 50's resort. It's a large area and needs to be done with community involvement, in my opinion. Thank you. ea. Attack of the second secon

Kind Regards,

Councillor, Division 4 Victoria Point and Coochiemudlo Island **Redland City Council |** Cnr Middle and Bloomfield Streets, Cleveland QLD 4163 PO Box 21, Cleveland QLD 4163 Phone: (07) 3829-8603 | Mobile: 0421 880 371 | Email: Lance.Hewlett@redland.qld.gov.au Web: www.redland.qld.gov

https://www.facebook.com/lance.hewlett

Proposed Major Amendments to the Redland City Plan

Councillor Workshop: 8 May 2018

MAKE A

COUNT

Conflict of Interests

 For the purposes of this discussion, Councillors are reminded of their obligations in relation to any conflicts of interests (material or perceived) pursuant to the Local Government Act 2009.

CONFIDENTIAL

Agenda

- Review Process
- Major Amendment Process
- Amendment List Sources
- Potential/Future Major Amendments
- Proposed Amendment Content
- Questions

CONFIDENTIAL

Review Process

We are here

-

Councillor briefing outlining proposed <u>major</u> amendments to the draft City Plan Councillors are given opportunity to nominate additional amendments for consideration Council Report confirms the proposed scope and sequence of major amendments proposed to be undertaken in the 2018/2019 financial year

CONFIDENTIAL

Major Amendment Process

Key steps outlined in the 'Minister's Guidelines and Rules':

- 1. Decide to make an amendment and notify the chief executive of the *Planning Act 2016*
- 2. Prepare amendment
- 3. State Interest Review (60 days)
- 4. Public Consultation (at least 20 days)
- 5. Review of submissions + preparation of consultation report
- 6. Notice to Minister requesting approval to adopt
- 7. Adoption of amendment package+ formal gazettal activities

Estimated minimum timeframe to complete a major amendment is 6–12months.

ONFIDENTIA

5

Proposed Major Amendment Packages 2018/2019

- A series of <u>separate</u> but <u>concurrent</u> amendment packages are proposed to be undertaken in 2018/2019
- Why? To ensure the amendment packages are manageable, transparent and readily understood by the community and avoid potential delays if one package is delayed

CONFIDENTIAL

Page 40 of 184

6

Proposed Major Amendment Packages 2018/2019

General Major Amendment Package - the focus of this briefing

Addresses matters raised during Draft City Plan workshops, Councillogue on an emeetings, Council officers and external sources (e.g. landowners and the Regionar Plan)
 Will also address matters such as development in the canal another side estates, in accordance with the Council resolution on <u>21 February 2018</u> (Item 12.2.7)

Wildlife Corridor Plan Package

Incorporate new provisions to reflect key parcovers espoused in the Wildlife Connections Action Plan 2018 - 2023 in accordance with the courtil esolution on <u>21 February 2018</u> (Item 12.2.5)
The package will also incorporate a number of refinements to the Environmental Significance Overlay and the introduction of a significant tree schedule

Victoria Point RA Structure Plan Package

• Finalisation of a structure plan

Amendments to incorporate the structure plan into the City Plan

be defined in accordance with the Council resolution on <u>21 March 2018</u> (Item 11.2.4)

Local European Heritage Package

• Proposed inclusion of the first tranche of locally significant privately owned heritage properties into the City Plan Heritage Overlay

Contingent on 18/19 budget allocation for associated incentives package

7

Pages 42 through 68 redacted for the following reasons: Irrelevant Information

Recommendations

- Support undertaking a series of <u>separate</u> but <u>concurrent</u> amendment packages:
 - General Major Amendment Package
 - Wildlife Corridor Plan Package
 - Victoria Point LDA Structure Plan Package
 - European Heritage Package (subject to budget approval)
- Generally support the proposed content of the General Major Amendment Package, as contained in this presentation, subject to the below items
- Councillors, within two weeks from the date of this briefing, to submit any other proposed major amendments to the draft City Plan
- Finalise a Council report confirming the scope and contents of the four major amendment packages proposed to be undertaken following adoption of the new City Plan

CONFIDENTIA

2017 – 2018

Group Plan City Planning and Assessment

The Operational Pla	an activities we are a Lead on			How we measure success	
17/18 Significant Activity	What CPA will deliver	Category *	Accountable Position	Measure/Milestone	Target
GREEN LIVING					
	s will improve our quality of life and our child risks such as climate change.	ren's lives, through our sustainable and	energy efficient use	of resources, transport and infrastruct	ure, and our we
5.1	a) Deliver transport planning activities	a) Service Delivery	Group Manager,	To be finalised pending recruitment of	
eliver transport	in the short term under the existing		City Planning &	principal transport planner	
anning for the ty.	Redlands Transport Plan 2016.b) Develop a new transport plan to replace the existing plan.	b) Transformation Portfolio	Assessment	\bigcirc 1	
	Group Partners - CET, CI, CorpS, CS, ESMP, IM	PMO - Redlands Transport Plan Project (71060)			
	ESIVIF, IIVI	Strategic Priority – Transport		$\mathcal{D}^{\mathbf{z}}$	
. WISE PLANNING & D	FSIGN			Y	
	ge population pressures and use land sustaina	bly while advocating and taking steps t	o determine the limit	s of growth and carrying capacity on a	local and
national basis, recognis	sing environmental sensitivities and the distine	ctive character, heritage and atmosphe	re of local communiti		
oushland areas and res	sponsive infrastructure and transport systems	will support strong, healthy communitie			
.1.1	a) Ensure that infrastructure necessary	a) Service Delivery	Principal Adviser	Subject to State approval and	Q3-4
nplement the	to support growth in the city is provided through the development		Planning and	timing of City Plan ensure that the LGIP is integrated into Asset and	
ocal overnment	assessment process and capital		Charging	Service Management Plans and the	
nfrastructure	works program.	AL AL		Capital works program.	
lan.			\diamond		
1.3	a) Undertake a major amendment	a) Service Delivery	Service Manager	Subject to State approval and	
ommence the	following commencement.		Strategic Planning	timing of City Plan:	
edland City	b) Undertake periodic reviews.	b) Service Delivery		Finalise drafting of first major	Q2
lan.	Group Partner - ESMP			amendment package	Q2
				Obtain State Government endorsement of the major	Q3
				amendment package and	
				commence public notification	
		(())		Adoption/commencement of	Q4
				major amendment package and	
				finalise scope of next amendment	
				package	
.2.3	a) Determine preferred land use/s for	a) Service	Service Manager	Subject to the Federal Government	
Plan for future	the site.	Delivery/Transformational Portfolio	Strategic Planning	selling Council the land: Commence technical planning	Q2
ise of surplus	Group Partner - RIC	Fortiono		investigations of the site	
ommonwealth		PMO – Birkdale Commonwealth		Finalise draft land use plan for	Q3
and at Birkdale.		Land Review (30562)		community consultation	
	N			Undertake community	Q4
	<u> </u>			consultation and finalise report on preferred future land use	
2.1	a) Implement the new Rectand City	a) Service Delivery	a) Service	a) Develop and implement training	Q2
.3.1	Plan and State Planning Ast.	.,	Manager	package in conjunction with City	
/aintain ffective	b) Amend systems and processes as	b) Service Delivery	Engineering and	Plan drafting team, subject to State	
ystems and	required to ensure effective		Environment and	approval and timing of City Plan	
rocesses that	implementation of planning instruments.		Planning		07
			Assessment	b1) Amend P&R to accommodate	Q2
			b) Principal	new City Plan requirements	
uality, timely	Group Partner - IM 🚫				1
uality, timely ecision making	Group Partner - IM 📏		Adviser Business	b2) Refine Online Lodgement	Q2
Inderpin Juality, timely lecision making or development Inplications	Group Partner - IM 📏		Planning and	System to	Q3
uality, timely lecision making	Group Partner - IM 📏				

*Categories include Infrastructure Portfolio, Transformation Portfolio, Service Delivery and Strategic Priorities

Page 45 of 184

2017 – 2018

Group Plan City Planning and Assessment

The Operational Plan activities that we contribute to as a Group Partner

	Significant Activity	How we contribute	
1.1.1	Manage Council owned water bodies for improved environmental outcomes.	Implement environmental outcomes as required under City Plan	
1.2.1	Implement the Natural Environment Policy	Ensure City Plan is continually updated to reflect latest environmental data consistent with the Policy	
3.3.1	Develop a coastal adaptation strategic plan.	Continue to participate in working groups & provide land use planning advice in the preparation of the coastal adaptation strategic plan	
4.1.3	Update Council's Aboriginal and Torres Strait Island Community Policy and Guidelines.	Participate as required in working groups and provide land use planning advice in the preparation of the ATSIC policy and guidelines	
4.3.2	Plan and deliver commitments under the ILUA in partnership with QYAC.	Continue to provide land use planning advice as required to deliver commitments under the ILUA agreement	
5.1.2	Implement the Netserv Plan.	Support the Netserv plan through the development assessment process	
5.2.1	Coordinate a centres master planning and place making program.	Continue to participate in working group and provide land use planning advice on the revitalisation of Cleveland and place making initiatives	
5.2.2	Develop master plan for Redland Aquatic Redevelopment.	Continue to provide land use planning and development assessment advice as the project progresses through stages	
5.4.2	Plan and develop cross-boundary transport and infrastructure priorities.	New transport planner to participate in cross boundary transport working group and through development of new Transport Plan Identify the transport infrastructure priorities for the City.	
6.3.1	Support economic transition for North Stradbroke Island (NSI).	Continue to participate in the NS) transition Strategy working group and provide land use planning advice on projects where CP&A is an identified project partner.	
6.4.1	Develop strategic opportunities for Redland City Council land holdings.	Provide land use planning and pevelopment assessment advice as required.	
6.6.1	Facilitate process with Economic Development Queensland.	Continue to assist and support ESMP group in facilitating process with Economic Development Queensland.	
8.1.1	Transform Council's systems and processes.	Business Intelligence use, improve electronic communication with customers, reduce printing	
8.1.2	Improve Council's e-service capability.	Refine the Online order to system for development applications; refine website content	
8.2.1	Optimise Redland City Council's asset management governance.	Ensure CPA activities align with the new assess management framework	
8.4.3	Align the organisation to meet changing operational requirements.	Actively engage in backership programs, meeting and activities as opportunities arise.	
8.4.4	Drive innovation and improvement through capable leadership.	On-going review and refinement of work processes to identify opportunities for improvements	
8.4.5	Improve organisational performance through employee feedback.	Implement duiture Sulvey outcomes	
8.4.6	Deliver a healthy and safe Redland City Council environment.	Deliver Safety Topic Alks and continue to undertake workplace safety inspections	
8.5.1	Review Council's community engagement model and framework.	Use the model for all CPA community engagement activities	

Page 46 of 184

2017 – 2018

Group Plan City Planning and Assessment

SER	/ICE DELIVERY (Extern	ernal/Internal services delivered by CPA)		How we measure success	
ID	Service Description (WHAT)	Service Initiative (HOW)	Accountable Position	Service Measure	Service Target
1	Development application processing		 a) Group Leadership Team b) Group Leadership Team c) Principal Adviser Infrastructure Planning and Charging d) Group Leadership Team 	% applications decided within legislative timeframes	≥90%
2	Respond to customer requests and enquiries		Group Leadership Team	% enquiries resolved within 5 days	90%
3	Business systems and process improvements		Principal Adviser Business Planning & Improvement	a) Amendments completed b) Intranet site updated c) Special eports created d) Fees and tharges review	 a) Amendments completed b) Intranet site updated c) Special reports created d) Fees and charges review complete
4	Planning for future land use and infrastructure requirements within the City		 e) Service Manager Strategic Planning f) Service Manager Strategic Planning g) Service Manager Strategic Planning h) Service Manager Strategic Planning i) Service Manager Strategic 	 Arrendment program Advice provided in accordance with customer service charter c) Review completed and Council resolution made d) Guidelines finalised e) Meetings attended and 	 a) Amendment program commenced b) Advice provided in accordance with customer service charter c) Review completed and Council resolution made d) Guidelines finalised e) Meetings attended and
		f) Complete a structure plan for the Victoria Point Local Development area, where neccessary	Planning j) Service Manager Strategic Planning k) Service Manager Strategic Planning l) Service Manager Strategic Planning m) Principal Adviser Infrastructure Planning and Charging	required submissions made f) Structure plan completed g) Program established h) Represent Council as required i) Recommendations implemented	 required submissions made f) Structure plan completed g) Program established h) Represent Council as required i) Recommendations implemented
				How we measure success	
ID	Service Improvement Area (What)	لير	Accountable Position	Improvement Measure	Improvement Target
1	Customer and stakeholder service	all	Group Manager CP&A	Meetings held	Actions implemented
2	Fees and charges	al al	Principal Adviser Business Planning & Improvement	ABC costing developed for an aspect of CP&A fees and charges	ABC developed
3	Business systems and process improvements		 a) Principal Advisor BP&I b) Principal Adviser BP&I c) Principal Adviser BP&I d) Principal Adviser Infrastructure Planning and Charging e) Principal Adviser Infrastructure Planning and Charging f) Principal Adviser BP&I g) Principal Adviser BP&I h) Principal Adviser BP&I i) Service Manager Planning Assessment 	 a) Printing reduced b) Act on efficiency opportunities c) Procedures and work instructions update d) Solution procured and implemented e) Controls established f) Dashboards created g) Lean improvements identified and prioritised h) E-planning initiatives identified and implemented i) Resource folder established 	a) Q4 b) Q4 c) Q4 d) Q4 e) Q4 f) Q4 g) Q4 h) Q4 i) Q1

Page 3

Irrelevant Information

Page 47 of 184

2017 - 2018 **Group Plan City Planning and Assessment**

PEOPLE, CAPABILITY & KNOWLEDGE (CPA has the Right Capability to Deliver our Services - People, Structure, Skills) How we measure success

Page 4

Irrelevant Information

Page 48 of 184

19.2 PAIGE PTY LTD V REDLAND CITY COUNCIL (PLANNING AND ENVIRONMENT COURT APPEAL) 2893/2020

Item 19.2

Page 9

This document is classified CONFIDENTIAL and as such is subject to

s.171 Use of information by councillors, s.199 Improper conduct by local government employees and s.200 Use of information by local government employees of the Local Government Act 2009 Pages 76 through 104 redacted for the following reasons: Sch. 3(7)

OFFICER'S RECOMMENDATION

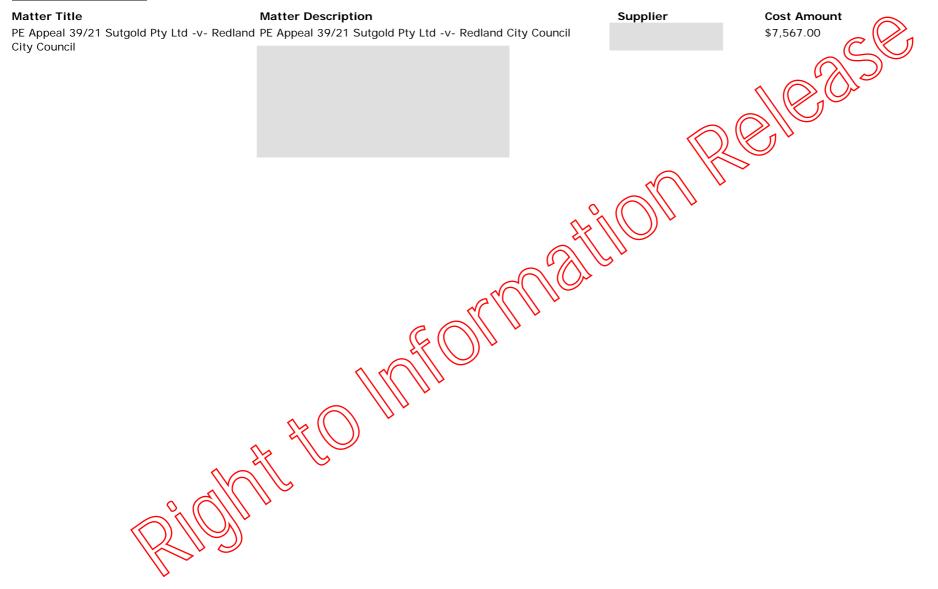
That Council resolves as follows:

- 1. To oppose the development application and the request to re-classify the koala habitat designation on the site, for the reasons generally in accordance with those internet field in Attachment 2.
- 2. To authorise the Chief Executive Officer to finalise the reasons for refusal after consultation with the relevant experts and Counsel advice.
- 3. To instruct its solicitors to notify the parties that it opposes the development application, for the reasons generally in accordance with those identified in Attachment 2.
- 4. That Council officers and solicitors engage experts and Council to assist with the appeal with a view to narrowing the issues and resolve the appeal using delegated authority where appropriate.
- 5. That this report and attachments remain confidential until the conclusion of the appeal, subject to maintaining the confidentiality of legally privileged and commercial in confidence information.

This document is classified CONFIDENTIAL and as such is subject to

s.171 Use of information by councillors, s.199 Improper conduct by local government employees and s.200 Use of information by local government employees of the Local Government Act 2009

Page 39


This document is classified CONFIDENTIAL and as such is subject to s.171 Use of information by councillors, s.199 Improper conduct by local government employees and s.200 Use of information by local government employees and councillor advisors of the Local Government Act 2009

Item 19.2- Attachment 1

Pages 107 through 114 redacted for the following reasons: Sch. 3(7)

Page 53 of 184

Matter Costs Report Print Date 3/06/2022 10:03:04 AM Request ID (9376)

Matter Costs Report Print Date 3/06/2022 10:08:37 AM Request ID (9370)

Matter Title

PE Appeal 40/21 Sutgold Pty Ltd -v-Redland City Council

Matter Description Supplier **Cost Amount** \$23,117.00 PE Appeal 40/21 Sutgold Pty Ltd -v- Redland City Council

Matter Costs Report Print Date 3/06/2022 10:16:00 AM Request ID (8789)

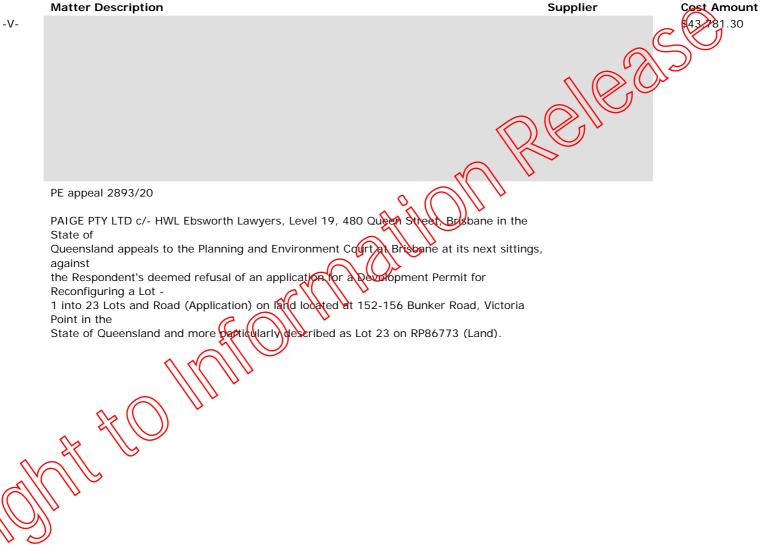
Matter Title PE Appeal 566 of 2020 Clay Gully Pty Ltd v RCC

Matter Description

CLAY GULLY PTY LTD ACN 627 052 224 of c/- Cooper Grace Ward Lawyers, Level 21 400 George Street, Brisbane in the State of Queensland, appeals to the Planning and Environment Court in Brisbane under section 229 and Schedule 1, Table 1 Ttem 1 of the Planning Act 2016 (Planning Act) against the Respondent's deemed refusal on a development application (Council reference ROL005912) for a development permit for a reconfiguration of a lot by standard format plan (3 into 289 lots over 7 stages, new road and park) (Development Application) made under the Sustainable Rianding Act 2009 (SPA) in respect of land situated at 39 Brendan Way, 21 to 29 and 31 Clay Gully Road, Victoria Point in the State of Queensland and more perticularly described as Lot 1 on RP72635, Lot 4 on RP57455 and Lot 1 on RP95573 (Land)).

Supplier

Cost Amount


Matter Costs Report Print Date 3/06/2022 10:11:08 AM Request ID (9001)

Matter Costs

Report Print Date 3/06/2022 10:14:18 AM Request ID (9243)

Matter Costs

Report Print Date 3/06/2022 10:05:27 AM Request ID (8577)

Matter Title

PE Appeal 3829 of 2019 Sutgold Pty Ltd -v- Sutgold Pty Ltd -v- Redland City Council Redland City Council

Matter Description

Appeal No. 3829 of 2019 - 314618

Appeal against refusal of development permit for reconfiguration over land acated at 72, 74, 78, 80 & 82 Double Jump Road.

Supplier

Cost Amount

34,047.50

Matter Costs

Report Print Date 3/06/2022 10:14:42 AM Request ID (8650)

Pty Ltd -V- Redland City Council

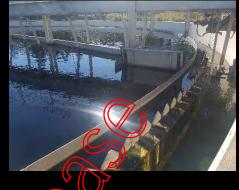
Matter Title

Matter Description

PE Appeal 4300/19 PPV Victoria Point Land PE Appeal 4300/19 PPV Victoria Point Land Pty Ltd -V- Redland City Council

Appeal against Respondants deemed refusal of an application for a vacely innary approval for a material Change of use for retirement facility & relocatione name park on land located 679-689, 687-707 & 711-719 Redland Bay read \$100 buble jump road Victoria Point

Supplier


Cost Amount

70.55

Redland City Coungil

Victoria Point Sewage Treatment Plant

Upgrade Planning for New Developments Planning Study

Revision C Final for RCC July 2020

Redland City Council Victoria Point STP – Upgrade Planning for New Developments Planning Study

This report has been prepared solely for the benefit of Redland City Council for the Victoria Point STP Upgrade Planning for New Developments. No liability is accepted by Tyr Group or any employee or sub-consultant of Ty-Group with respect to its use by any other person or in relation to any other project.

This disclaimer shall apply notwithstanding that the report may be made available to other fersion for an application for permission or approval or to fulfil a legal requirement.

Revision	Date	Description	Prepared by	Reviewed by
С	July 2020	For RCC	David Fligelman, Ian Fisher, Ryan Schwartz	David Fligelman

Tyr Group Pty Ltd Suite A, 12 Byron Street (PO Box 315) Bangalow, NSW, 2479 Australia Tel: +61-7-3105 2801 Fax: +61-7-3105-2802

July 2020

TABLE OF CONTENTS

1.1 BACKGROUND AND OBJECTIVES. 4 1.2 BACKGROUND AND OBJECTIVES. 6 2 BACKGROUND AND OBJECTIVES. 6 3 BASIS OF ASSESSMENT, PLANNING, AND DESIGN. 7 3.1 CONTREUTING POPULATION. 7 3.1 CONTREUTING POPULATION. 7 3.1 CONTREUTING POPULATION. 7 3.1 CONTREUTING POPULATION. 7 3.1 CONTREUTING SANGE FLOWS. 10 3.1 INTLUEN SEWAGE FLOWS. 10 3.3 INTLUENT SEWAGE FLOWS. 10 3.4 INFLUENT SEWAGE FLOWS. 10 3.5 SLIDGE AGE, SLUDGE SETTIEABULTY AND CLARPIER DESIGN PARAMETER 24 3.6 ENDOF WASTE CODE 36 3.7 RECYCLED WATER QUALITY. 30 3.8 ENDOF WASTE CODE 36 3.9 REDUNANCY 37 3.10 CONDITION OF EXISTING PLANT INFRASTRUCTURE. 38 4 DYNAMIC PROCE SS MODEL DEVELOPMENT AND CALBRADON 39 5 EXISTING PLANT CAPACITY. 49 5.1 HYDRAULIC CARCITY.	1	E	XECUTIVE SUMMARY	
3 BASIS OF ASSESSMENT, PLANNING, AND DESIGN. 7 3.1 CONTRIBUTING POPULATION. 7 3.2 INFLUENT SEWAGE COMPOSITION. 10 3.3 INFLUENT SEWAGE COMPOSITION. 10 3.4 INFLUENT SEWAGE COMPOSITION. 10 3.4 INFLUENT SEWAGE COMPOSITION. 15 3.4 INFLUENT SEWAGE COMPOSITION. 15 3.5 SLUDGE AGE, SLUDGE SETTLEABILITY AND CLARIFIER DESIGN PARAMETER 26 3.6 ENVIRONMENTAL LICENCE LIMITS FOR DISCHARGE AND EXISTING PLANT INFRASTRUCTURE. 36 3.10 CONDITION OF EXISTING PLANT INFRASTRUCTURE. 37 3.10 CONDITION OF EXISTING PLANT INFRASTRUCTURE. 38 4 DYNAMIC PROCESS MODEL DEVELOPMENT AND CALBRATION 39 5 EXISTING PLANT CAPACITY. 49 5.1 HYDRAULIC CAPACITY. 49 5.2 SECONDARY TREATMENT PROCESS CAPACITY. 54 5.3 SUMMARY OF RESISTING PLANT CAPACITY. 54 5.3 SUMMARY OF REQUIRED UPGRADE WORKS. 55		1.2	Basis of Planning Adopted	
3.1 CONTRIBUTING POPULATION 7 3.2 INFLUENT SEWAGE FLOWS 10 3.3 INFLUENT SEWAGE COMPOSITION 15 3.4 INFLUENT LOADS ADOPTED FOR CAPACITY ASSESSMENT 24 3.5 SLUDGE AGE, SLUDGE SETTLEABILITY AND CLARIFIER DESIGN PARAMETER 26 3.6 Environmental Licence Limits for Discharge and Existing Plant Capacity 36 4 DYNAMIC PROCESS MODEL DEVELOPMENT AND CALERATION 39 5 Existing Plant Capacity 49 5.1 Hydraulic Capacity 51 5.2 Secondary Treatment Process Capacity 58	2	B	ACKGROUND AND OBJECTIVES	6
3.2 INFLUENT SEWAGE FLOWS. 10 3.3 INFLUENT SEWAGE COMPOSITION 15 3.4 INFLUENT LOADS ADOPTED FOR CAPACITY ASSESSMENT. 24 3.5 SLUDGE AGE, SLUDGE SETTLEABILITY AND CLARIFIER DESIGN PARAMETER 26 3.6 ENVIRONMENTAL LICENCE LIMITS FOR DISCHARGE AND EXISTING PLANT ENVIRONMENTAL 30 3.7 RECYCLE DU WATER QUALITY. 36 3.8 END OF WASTE CODE. 36 3.9 REDUNDANCY. 37 3.10 CONDITION OF EXISTING PLANT INFRASTRUCTURE. 38 4 DYNAMIC PROCESS MODEL DEVELOPMENT AND CALEBRATION. 39 5 EXISTING PLANT CAPACITY. 49 5.1 HYDRAULIC CAPACITY. 49 5.2 SECONDARY TREATMENT PROCESS CAPACITY. 54 5.4 SUMMARY OF EXISTING PLANT CAPACITY. 54 5.4 SUMMARY OF REQUIRED TO SERVICENTER DEVELOPMENTS. 58 6.1 INCREASED NITROGEN REMOVAL 58 6.2 ADDITIONAL SOLDS SETTLING CAPACITY. 58 6.3	3	B	ASIS OF ASSESSMENT, PLANNING, AND DESIGN	7
5 EXISTING PLANT CAPACITY. 49 5.1 Hydraulic Capacity. 49 5.2 Secondary Treatment Process Capacity 51 5.3 Summary of Existing Plant Capacity 54 5.4 Summary of Required Upgrade Works 55 6 PLANT UPGRADES REQUIRED TO SERVICE NEW DEVELOPMENTS. 58 6.1 Increased Nitrogen Removal 58 6.2 Additional Solids Settling Capacity 70 7 ESTIMATED COSTS 74 7.1 Capital Costs 74 7.2 OPERATIONAL Costs 78 7.3 Whole of Life Costs 79 8 CONCLUSION AND RECOMMENTIONS 81 9 REFERENCES 82 APPENDIX A: VICTORIA POINT WWTP – HYDRAULIC ANALYSIS INPUT SHEETS 84		3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	INFLUENT SEWAGE FLOWS INFLUENT SEWAGE COMPOSITION INFLUENT LOADS ADOPTED FOR CAPACITY ASSESSMENT SLUDGE AGE, SLUDGE SETTLEABILITY AND CLARIFIER DESIGN PARAMETER ENVIRONMENTAL LICENCE LIMITS FOR DISCHARGE AND EXISTING PLANT EXAMPLE RECYCLED WATER QUALITY END OF WASTE CODE REDUNDANCY	15 24 26 30 36 36 37
5.1HYDRAULIC CAPACITY495.2SECONDARY TREATMENT PROCESS CAPACITY515.3SUMMARY OF EXISTING PLANT CAPACITY545.4SUMMARY OF REQUIRED UPGRADE WORKS556PLANT UPGRADES REQUIRED TO SERVICE NEW DEVELOPMENTS586.1INCREASED NITROGEN REMOVAL586.2ADDITIONAL SOLIDS SETTLING CAPACITY686.3DISINFECTION707ESTIMATED COSTS747.1CAPITAL COSTS747.3WHOLE OF LIFE COSTS787.3WHOLE OF LIFE COSTS789REFERENCES82APPENDIX A:VICTORIA POINT WWTP - NET PRESENT COST ANALYSIS INPUT SHEETS84	4	D	YNAMIC PROCESS MODEL DEVELOPMENT AND CALIBRANON	39
5.2 SECONDARY TREATMENT PROCESS CAPACITY 51 5.3 SUMMARY OF EXISTING PLANT CAPACITY 54 5.4 SUMMARY OF REQUIRED UPGRADE WORKS. 55 6 PLANT UPGRADES REQUIRED TO SERVICE NEW DEVELOPMENTS. 58 6.1 INCREASED NITROGEN REMOVAL 58 6.2 Additional Solids Settling Capacity 68 6.3 DISINFECTION. 70 7 ESTIMATED COSTS. 74 7.1 CAPITAL COSTS. 74 7.2 OPERATIONAL COSTS. 74 7.3 WHOLE OF LIFE COSTS. 79 8 CONCLUSION AND RECOMMENDATIONS 81 9 REFERENCES 82 APPENDIX A: VICTORIAL POINT WWTP – HYDRAULIC ANALYSIS INPUT SHEETS. 84	5	E		49
6.1INCREASED NITROGEN REMOVAL586.2ADDITIONAL SOLIDS SETTLING CAPACIT686.3DISINFECTION707ESTIMATED COSTS747.1CAPITAL COSTS747.2OPERATIONAL COSTS787.3WHOLE OF LIFE COSTS798CONCLUSION AND RECOMMENDATIONS819REFERENCES82APPENDIX A:VICEORIA POINT WWTP – HYDRAULIC ANALYSIS83APPENDIX B:VICEORIA POINT WWTP – NET PRESENT COST ANALYSIS INPUT SHEETS84		5.2 5.3	Secondary Treatment Process Capacity	51 54
6.2ADDITIONAL SOLIDS SETTLING CAPACIT686.3DISINFECTION707ESTIMATED COSTS747.1CAPITAL COSTS747.2OPERATIONAL COSTS787.3WHOLE OF LIFE COSTS798CONCLUSION AND RECOMMENDATIONS819REFERENCES82APPENDIX A:VICTORIA POINT WWTP - HYDRAULIC ANALYSIS83APPENDIX B:VICTORIA POINT WWTP - NET PRESENT COST ANALYSIS INPUT SHEETS84	6	P	LANT UPGRADES REQUIRED TO SERVICE NEW DEVELOPMENTS	58
7.1CAPITAL COSTS.747.2OPERATIONAL COSTS787.3WHOLE OF LIFE COSTS.798CONCLUSION AND RECOMMENDATIONS819REFERENCES82APPENDIX A:VICTORIA POINT WWTP – HYDRAULIC ANALYSIS83APPENDIX B:VICTORIA POINT WWTP – NET PRESENT COST ANALYSIS INPUT SHEETS84		6.2	Additional Solids Settling Capacity	68
7.2 OPERATIONAL COSTS 78 7.3 WHOLE OF LIFE COSTS 79 8 CONCLUSION AND RECOMMENDATIONS 81 9 REFERENCES 82 APPENDIX A: VICTORIA POINT WWTP – HYDRAULIC ANALYSIS 83 APPENDIX B: VICTORIA POINT WWTP – NET PRESENT COST ANALYSIS INPUT SHEETS 84	7	E	STIMATED COSTS	74
9 REFERENCES 82 APPENDIX A: VICTORIA POINT WWTP - HYDRAULIC ANALYSIS 83 APPENDIX B: VICTORIA POINT WWTP - NET PRESENT COST ANALYSIS INPUT SHEETS 84		7.2 7.3	OPERATIONAL COSTS	78 79
APPENDIX A: VICTORIA POINT WWTP – HYDRAULIC ANALYSIS	8	С	ONCLUSION AND RECOMMENDATIONS	81
APPENDIX B: VICTORIA POINT WWTP - NET PRESENT COST ANALYSIS INPUT SHEETS	9	R		
	AF	PPEN		
APPENDIX C: ASTORIA POINT WWTP - COST ESTIMATES				
	A	PPEN	IDIX C: ASTORIA POINT WWTP – COST ESTIMATES	85

ABBREVIATIONS

AAL	Average Annual Load
ADWF	Average Dry Weather Flow
APT	Activated Primary Tank
BNR	Biological Nutrient Removal
BUA	Beneficial Use Approach
COD	Chemical Oxygen Demand
DES	Department of Environment and Science
DO	Dissolved Oxygen
EBPR	Excess Biological Phosphorus Removal
EP	Equivalent Population
EoW	End of Waste Code
IDM	Infrastructure Demand Model
MLSS	Mixed Liquor Suspended Solids
MML	Maximum Monthly Load
NPC	Net Present Cost
PDWF	Peak Dry Weather Flow
PST	Primary Sedimentation Tank

PWWF Peak Wet Weather Flow RAS Return Activated Sudge Readily Biodegradable RBCOD 3D rDON Dissolved Organic Nittogen Slowly Biodogradable COD SBCOD STP Sewage Freatment Plant SRT Slodge Recention Time (Sludge Age) Specific Oxygen Uptake Rate SOUR tota Phosphorus TΡ TSS Total Suspended Solids VFA Volatile Fatty Acid VS Walatile Solids Volatile Suspended Solids Waste Activated Sludge Waste Reduction and Recycling Act Wastewater Treatment Plant

1 EXECUTIVE SUMMARY

1.1 BACKGROUND AND OBJECTIVES

Council has received development applications that cover the majority of land in the SW Victoria Point local splan area. As a result, Council has needed to prioritise and bring forward detailed land use and infrastructure planning for the local plan area ahead of the City Plan and LGIP timeframe of post 2027. Two proposed developments in the cateriment are projected to result in a connected load of 44,312 EP to Victoria Point STP in 2041, with the bulk of this additional bags predicted to be connected between 2022 and 2027. The existing Victoria Point STP operates under a very tight with the ritrogen mass loads discharged, and the growth in sewage loads has significant implications for the nitrogen removal required to be achieved by the plant in the future.

The projected growth in loads requires the plant's previous upgrade strategy to be reassessed, including:

- Specific consideration of the process and hydraulic capacity of the existing plant and
- The scope, costs and timing of works required to ensure ongoing correliance with the Environmental Authority, including the Total Nitrogen Mass Load limit, under the projected increase in sewage loads through to 2041 (44,312 EP).

1.2 BASIS OF PLANNING ADOPTED

The sewage loads from the catchment are expected to be increased supplemented by two developments – Weinam Creek (to an ultimate value of 3000 EP) and South West Victoria Point to the ultimate connected population of 4215 EP). The majority of the growth associated with these developments is expected to occur between 2022 and 2027. The planning horizon for planning has been adopted as 2041.

Based on visual inspection, the existing plant is generally good condition. Items requiring renewal comprise:

- Removal (and replacement if required) of the soustis covers on the oxidation ditch aerators;
- Refurbishment of structural steel and cladeing of the dewatering building, and,
- Provision of a replacement sludge dewatering machines.

There have been major structural issues in the existing bioreactor. In the absence of other information, the analysis has assumed that the repairs to this structure undertaken in July 2017 will render it suitable for ongoing use throughout the planning horizon.

The sewage loads and composition applied to the study were drawn from extensive analysis of 12 years of historical operational monitoring data, and intensive monitoring of the plant influent sewage composition and plant operations in November and December 2019. This data was used to calibrate a dynamic process model of the existing plant for use in the estimation of the existing plant savacity, and the selection and concept design of the required upgrade works.

The current effluent quality criteria for the plant requires the mass load of total nitrogen to be maintained at less than 13.5 kg/d on an annual basis. Compliance with this limit requires the effluent total nitrogen concentration to be substantially reduced under the paper flows which will arise due to the new developments. Previous consultation with DES stretching back to 2002-03 has not been successful in amending this limit. Further analysis and modelling of the receiving waterway, Eprapah Creek is currently underway to identify the potential to increase the mass of nitrogen which can be discharged from the paper. However, pending completion of this analysis, the 13.5 kgN/day limit has been applied to the upgrade planning

FINDINGS AND RECOMMENDATIONS

The prevailing capacity of Victoria Point STP is limited to 38,300 EP by the ability of the secondary clarifiers to treat 5 x ADWF. The existing plant's ability to maintain compliance with the Total Nitrogen Mass Load Limit will be compromised at a similar load (38,700 EP).

Based on this analysis, the plant requires upgrades three process areas to treat the additional 7215 EP load from the South West Victoria Point and Weinam Creek developments. Concept designs for the upgrade works required in each of these process areas were developed as a part of this study. The scope, required timing and estimated capital costs of the required upgrades is summarised in Table 1-1.

Table 1-1: Summary of Required Plant Upgrades and Staging to Service New Developments					
Upgrade	Estimated Capital Cost	Re	fren		
Post-Anoxic / Re-Aeration Zone)	\$1.289m Direct Job Cost	38,700 EP	2025		
1 No. Additional Secondary Clarifier	\$2.255m Direct Job Cost	38,30 EF 1	2024		
1 No. Additional Chlorine Contact Tank	\$0.296m Direct Job Cost	38,700 EP	2025		
Total Capital Cost (+/- 30% Accuracy Target)	Total Direct Job Cost (including Prevena)es, Commissioning and Handover)) <u>\$4.03</u> 3m Total Project Cost (including 30% Contingency): \$8.512m				

The operational costs required to treat the sewage load generated by the south west Victoria Point and Weinam Creek Developments were estimated in detail. The additional electricity consumption and biosolids haulage required to treat the load dominates the additional costs. In 2041 (the planning horizon), the additional annual operating cost is \$135,100 p.a. with additional sludge haulage at \$65 /wet tonne, increasing to \$160,409 p.a. if the rate for sludge haulage rises to \$100 /wet tonne

The whole-of-life cost to treat the load from the South West Victors Point and Weinam Creek Developments is \$10.31-10.68m over 40 years, depending on the cost of biosolids management.

The works to treat sewage loads from the developments are sequired to be completed and in service by 2024-25. This suggests the upgrades should be undertaken under a single contract with procurement and design commencing in 2020-21.

Rev C

2 BACKGROUND AND OBJECTIVES

The Victoria Point Sewage Treatment Plant (STP) was originally constructed in 1977, then upgraded to an oxidation ditchbased process in 2003. The sewage received by the plant is primarily residential in origin, with some light trade waste. The plant consistently achieves excellent nitrogen removal, with the annual median effluent total nitrogen ranging from 1.40 mg/L to 1.90 mg/L over the last five years of operation.

The existing Environmental Authority for the plant includes a stringent requirement for total nitrogen mass loads not to exceed 13.5 kgN/d on a long-term median basis. This requirement constrains the effluent total nitrogen truth to lower values as the flow to the plant increases, and there is a risk of non-compliance with this limit at the current sewage flows and effluent nitrogen performance. While issues in the initial calculation basis applied to this limit have been referred to the regulator on a number of occasions (including 2003 and 2010), Redland City Council's case to take the limit to 21.3 kgN/d has not been accepted to date.

The projected load for 2041 is 44,312 EP based on two proposed developments in the sate ment – South West Victoria Point and Weinam Creek. The bulk of this additional load is predicted to be connected between 2022 and 2027.

The loads from these developments will result in substantial **exceedance of the existing plant's capacity in the near term**, and prevent compliance with the existing effluent quality criteria. On this besis, Realand City Council requires the **plant's** previous upgrade strategy to be reassessed in detail, including specific consideration of:

- The actual sewage loads currently received by the plant (based or bern long term monitoring data, and an intensive monitoring program undertaken in November-December 2019),
- Projection of the sewage loads for the two proposed perception of the sewage loads for the two proposed perception of the sewage loads for the two proposed perceptions through to a planning horizon of 2041;
- The hydraulic capacity of the existing plant;
- The process capacity of the existing plant (based by dynamic process modelling);

The development of concept designs, cost estimates and required timing for the upgrade works required to ensure ongoing compliance with the Environmental Authority, including the Total Nitrogen Mass Load limit, under the increased loads associated the Weinam Creek and South West Active Roint developments through to 2041.

3 BASIS OF ASSESSMENT, PLANNING, AND DESIGN

3.1 CONTRIBUTING POPULATION

Redland City Council has received development applications that cover the majority of land in the SW Article oint local plan area. As a result, Council has needed to prioritise and bring forward detailed land use and infrastructure planning for the local plan area ahead of the City Plan and LGIP timeframe of post 2027.

The projected contributing population to Victoria Point STP catchment is shown in Table 3-1 and Figure 3-1 overleaf. The figures shown are based on the Infrastructure Demand Model (IDM) outputs provided by Red and City Council.

The contributing population of the Weinam Creek development was originally provided to an original value of 3377 EP. Based on advice from Redland City Council, this project has assumed a linear growth we through to a reduced ultimate load of 3000 EP in 2036.

In the absence of detailed projections for the South West Victoria Point development formerly known as Clay Gully), the projection has been developed based on connections commencing in 2022 43, and linear growth over the subsequent five years. The planning has applied an ultimate connected population of 4215 55 for this development.

It is important to note that the "ultimate" connected population, as shown in Jable 3-1, does not refer to a particular year. Rather, the ultimate refers to the connected population when the catcherent is "fully developed".

The planning horizon for this report has been set as 2041, corresponding to a connected sewage load of 44,312 EP, with the majority of this growth occurring between 2022 and 2030.

Rev C

Table 3-1: Victoria Point STP - Projected Connected P	opulation
---	-----------

	ona i onitioni i rojectea connectea i		
Year	South West Victoria Point Development	Weinam Creek Development	Total (incl. Developments)
2020		0 EP	32, Q EF
2021		434 EP	63.274 EP
2022	0 EP	677 EP	033,992 EP
2023	843 EP	921 EP	35)453 EP
2024	1,686 EP	1,164 EP	36,914 EP
2025	2,529 EP	1,408 EP	38,375 EP
2026	3,372 EP	1651 EP	39,836 EP
2027	4,215 EP	1,839 EP	41,153 EP
2028	4,215 EP	2,027 EP	41,627 EP
2029	4,215 EP	2,216 EP	42,102 EP
2030	4,215 EP	2,404 P	42,576 EP
2031	4,215 EP	2572 58	43,050 EP
2032	4,215 EP	OR OTHER	43,211 EP
2033	4,215 EP	2,755 EP	43,373 EP
2034	4,215 EP	2,837 EP	43,534 EP
2035	4,215 EP	2,918 EP	43,696 EP
2036	4,215 EP	3000 EP	43,857 EP
2037	4,215 EP	3000 EP	43,948 EP
2038	4,215 EP	3000 EP	44,039 EP
2039	4,215 EP	> 3000 EP	44,130 EP
2040	4,215 EP	3000 EP	44,221 EP
2041	4,215 EP	3000 EP	44,312 EP
Ultimate	4,215 E	3000 EP	51,613 EP

3.2 INFLUENT SEWAGE FLOWS

The dry weather flows to the plant are critical to quantifying the plant loading, but additionally for Victoria Point STP, determine the maximum acceptable effluent total nitrogen (see Section 3.6.3).

The influent flows to the plant have been analysed for the period January 2007 through June 2019, and estimated on a per capita basis (using the IDM population projection) for the last six years. The following two criteria were applied to exclude wet weather days from the dataset:

Criteria 1: Exclusion of days on which the recorded rainfall exceeded 4mm, or the rainfall in the processing 4 days exceeded 10mm. This criterion is focussed on reducing the influence of even modest levels of sustained influence on the analysis by excluding days immediately following relatively minor rainfall.

Criteria 2: Exclusion of days on which the recorded rainfall exceeded 1mm, or the rainfalt the preceding 4 days exceeded 50mm. This criterion is identical to that used to define a "dry weather day" in the Environmental Authority for all Redland STPs. This criterion will exclude inflow to the sewerage system more than Criteria 1, but retain more days which are influenced by the sustained infiltration which occurs after heavy rainfall.

The results of this analysis are shown in Figure 3-2 and Figure 3-3, and indicate:

- The average flow tracks very strongly with total rainfall on a 365 day rolling average basis. This indicates the impact of sustained infiltration after wet weather events on the flows to the plant.
- There does not appear to have been any substantial increase in the baseline dry weather flow to the plant over the last 10 years. That is, for a given annual rainfall, the carvated dry weather average flows do not appear to have increased when considered on a 365 day average basis.
- There is a small discrepancy between influent sewage flows and the flows discharged from the plant. This is likely due to inaccuracies with the effluent flowmeter, which is calculated from the height of flow of a weir. The overall magnitude of this error is not significant.
- The per capita dry weather sewage flows over the last four years have averaged 180 L/EP/d (Influent, Criteria 1) to 191 L/EP/d (Effluent, Criteria 1) out all of these years were below the average annual rainfall.
- The maximum recorded flows per capita during the analysis period, calculated on an annual basis, were in 2011 (212 L/EP/d Influent, 1584mm) and 2012 (216 L/EP/d Influent, 1384mm). Since then, the maximum per capita flows, were 219 L/EP/d estimated for 2013 and 2015 under Criteria 2 for the effluent. Both of these years recorded comparable (or higher) rainfall than the 2011 and 2012 years. This suggests that a moderately wet year may see a per capita flow in the order of 220 L/EP/d (calculated under Criteria 2).
- The dry weather flow calculated for the characterisation period of November 29 December 19, 2019 was 153 L/EP/d. As the characterisation period followed on from a prolonged period of low rainfall, this is likely to represent the minimum per capita flow at Victoria point.

Based on the analysis of the data, a maximum dry weather average per capita inflow of 220 L/EP/d has been carried forward as the basis of planning. For reference, it is worth noting that the 2003 plant upgrade was based on a per capita flow of 220 L/EP/d, but the Strategic Planning Review (2009) applied a per capita flow of 190 L/EP/d increasing to 230 L/EP/d by 2025.

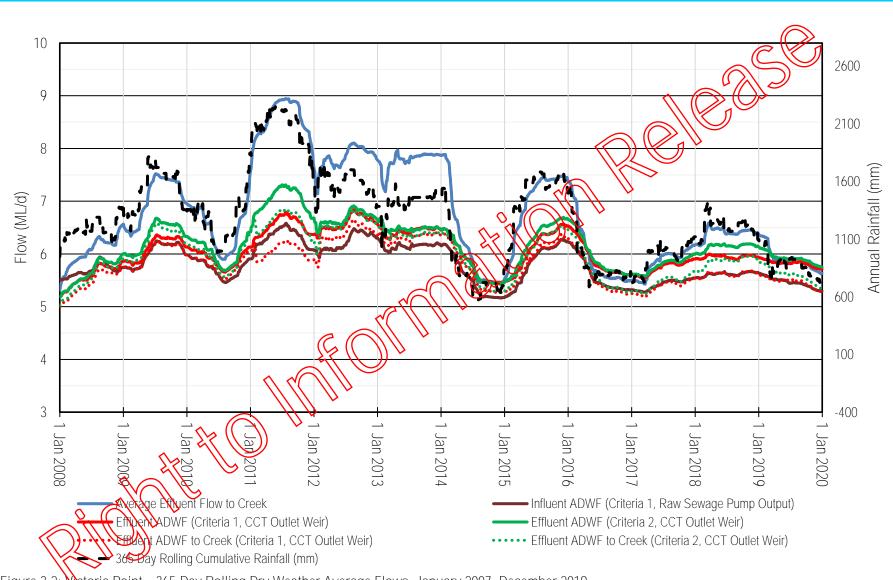
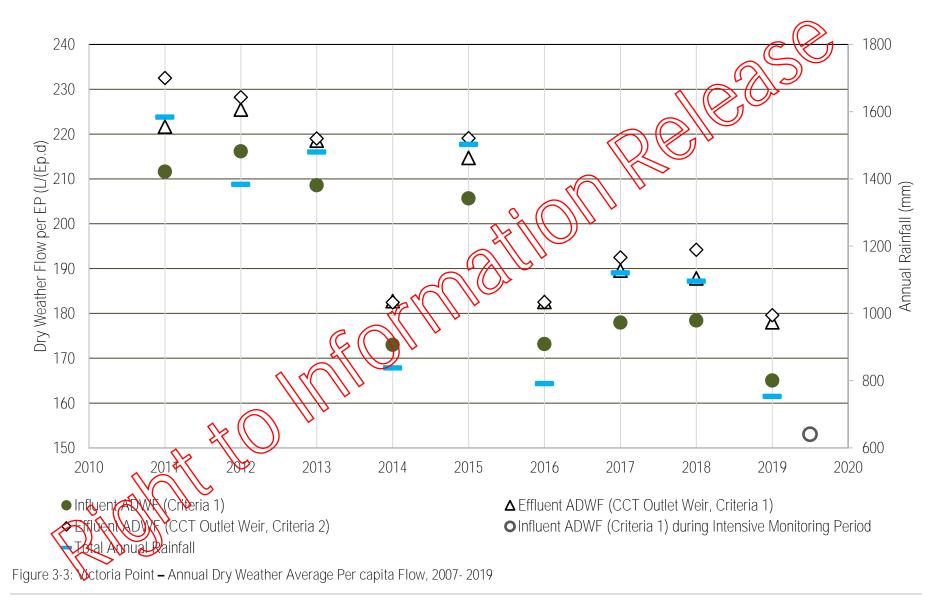



Figure 3-2: Actoria Point – 365-Day Rolling Dry Weather Average Flows, January 2007- December 2019

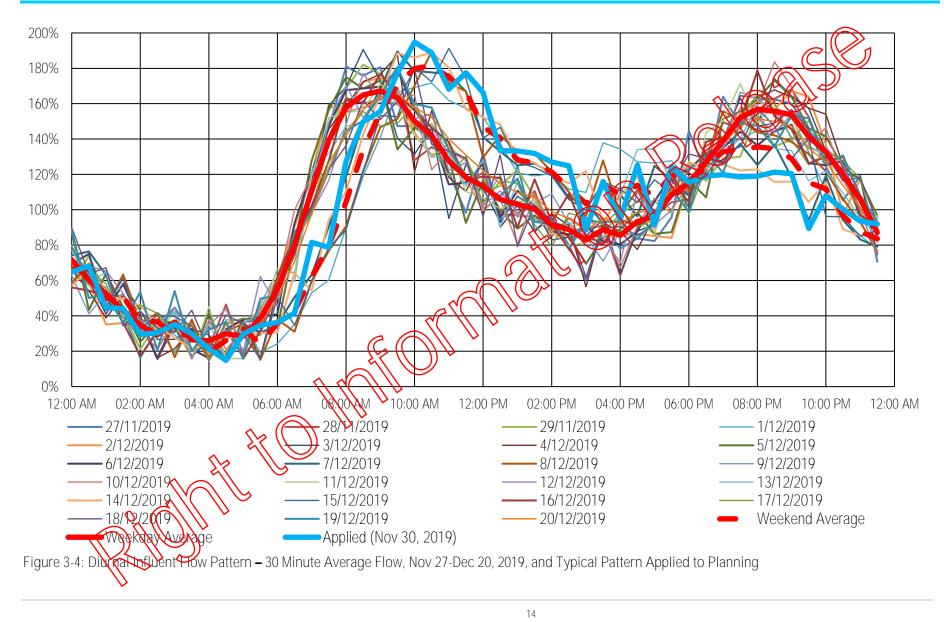
GROUP

REATMENT AND REUS

GROUP

C TREATMENT AND REUSE

3.2.1 Dry Weather Diurnal Influent Sewage Flows


The typical dry weather diurnal sewage flow pattern was derived from 30-minute SCADA data drawn from the intensive monitoring period (November 27 through December 20, 2019). No filtering of this data for wet weather was required as the plant was operating under a sustained period of dry weather at this time.

Average diurnal flow patterns were derived from this data based on a 30-minute averaging are summarised in Figure 3-4. As the averaging of daily flow patterns serves to attenuate the diurnal profile (reducing the magnitude of the beaks and the troughs), a "typical" diurnal profile was derived from the SCADA data and adopted for analysis of the plant capacity. To this end, the profile from November 30, 2019, showing a diurnal peak of 1.95 x ADWF, was applied to the capacity design.

The typical dry weather diurnal peaking factor recorded during the monitoring period was to ADWF on weekdays, and 1.9 x ADWF on weekends. This ratio is typical for sewage catchments of this scale.

Rev C

July 2020

3.3 INFLUENT SEWAGE COMPOSITION

3.3.1 Available Influent Sewage Monitoring Data

The ongoing sampling and composition monitoring of Victoria Point STPs influent sewage was limited in front years. Key limitations in the available long-term influent characterisation data included:

- Limited valid sampling events for bulk pollutants (COD, BOD₅, TKN, Total Phosphot(s) suspended Solids): There were a total of just 61 dry weather influent sampling events over the last 10 years – all since 2014. However, this data set is reduced further by inconsistencies and anomalies observed for almost all sampling events prior to October 2015. These issues, likely related to non-representative sampling, appear to they been resolved around this time, resulting in a total of 30 dry weather sampling results over the period from October 2015 through to May 2019. All but one of these 30 influent sampling events occurred in the 2015-2017 regis. These results have been used to support estimates of average annual pollutant loads, but were not sufficient for estimation of the extent of variation around the average (e.g. Maximum Monthly Load, Maximum Weeky Load etc.).
- Limited valid sampling to support COD fractionation (e.g. sCOD, FFCOD, BOD₅, sBOD₅, TSS, VSS): While there is substantial data to support estimation of the COD fractions for periods well prior to 2014, there was little or no valid data from the last five years. The limited monitoring through to May 2019 included BOD₅ results which were inconsistent with the remainder of the results. Further, there was only one sampling result with a direct measurement of inert suspended solids.

Due to these gaps in the influent sewage composition, intensive control of the plant influent sewage and operational performance was undertaken from November 28 through to December 18, 2019. This program included sampling to support estimation of the bulk pollutant load, COD fractionation, and diuma pollutant variations. As outlined in the following sections, the intensive monitoring period provided suitable information for period of the influent sewage fractions, and calibration of a dynamic model of the plant's secondary treatment profess. However, the results from both the long-term sampling and characterisation program are not sufficient to support accurate estimation of maximum monthly loads (relative to average annual loads). As such, the typically observed ratios of maximum monthly loads to average annual loads (MML/AAL) for Municipal STPs of comparable scale have been applied (1.18 for COD, and 1.15 for TKN, TP and ISS).

The influent parameters measured during the intensive monitoring period are summarised in Table 3-2.

Table 3-2: Intensive Monitoring Period (Nov 28-Dec 18, 2019) – Summary of Influent and Effluent Results

Date of Collection	Units	Range	Median	No. of Results
Influent Sewage – 24 Hour Compos	ite Results			\bigcirc
Flow from Log (6am to 6am)	ML/d	4.7 - 5.4	5	
pH - Field	pH units	7.33 - 8.15	7.56	8
Conductivity - Field	µS/cm	1170 - 1710	1410	8
Total Alkalinity	mg/L as CaCO ₃	293 - 403	299	8
BOD 5 days @ 20°C	mg/L	220 - 420	28	11
BOD ₅ Mass Load	kg/d	1104 - 2192	- AST	11
Soluble BOD (1.2um)	mg/L	59 - 130	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	11
sBOD/BOD	ratio	0.24 - 0.46	0.29	11
BOD-Uninhibited	mg/L	300 - 400	355	6
cBOD/Total BOD	ratio	0.8 - 1.05	0.95	6
COD	mg/L	610 - 1100	790	13
COD Mass Load	kg/d	3020 - 5426	> 3863	13
Soluble COD (1.2um)	mg/L	200 300	250	13
sCOD/COD	ratio	0.24 0.41	0.30	13
Flocculated Soluble COD	mg/L	×148-180	165	6
F _{bs} (at average effluent sCOD)	ratio	0.144 - 0.176	0.152	5
Total Oil & Grease	mg/L	AZ - 100	65.5	4
Suspended Solids	mg/L	0 - 540	360	13
VSS/TSS	ratio	0.88 - 0.97	0.94	13
Inert Suspended Solids	mg/L	> 10 - 60	20	13
Calcium as Ca	mg/Ł	> 36 - 37	36.5	4
Magnesium as Mg	200 The	17 - 21	17.5	4
Ammonia N	(hg/L)	49 - 80	51	13
Nitrate N (Calc)	v mg/L	0.026 - 0.54	0.052	7
Nitrite+Nitrate as N	MIGHL	0.026 - 0.54	0.042	8
Total Kjeldahl Nitrogen as N 🛛 🚫	mg/L	64 - 84	69	13
Total Nitrogen as N	mg/L	64 - 85	69	13
TN Mass	kg/d	308 - 414	334	13
Ammon	ratio	0.66 - 0.80	0.74	12
Ortho Phosphorus as P	mg/L	4.2 - 8.1	4.6	13
Total Phosphorus as P	mg/L	6 - 11	8.6	13
Mass Load	kg/d	29.2 - 53.6	43.6	13

Table 3-2. Intensive wormonitoring Period (Nov 20-Dec $10, 2019) - Summary or initiality the ended Results (continu$								
Date of Collection	Units	Range	Median	No. of Results				
Effluent – 24 Hour Composite Resu								
pH - Field	pH unit	6.88 - 7.86	6.91					
Total Alkalinity	mg/L as CaCO₃	114 - 115	115	2)				
BOD 5 days @ 20°C	mg/L	<5	<5					
COD as O ₂	mg/L	21 - 31	25.5	6				
F _{us} (based on Effluent COD)		0.022- 0.040	0.027 🕔	6				
Soluble COD (1.2um)	mg/L	14 - 28	20.5	6				
F _{us} (based on Effluent sCOD)		0.018 - 0.032	6.823	6				
Suspended Solids	mg/L	<5	A	6				
VSS	mg/L	<5		6				
Ammonia N	mg/L	0.02 - 0.37	0.044	6				
Nitrate N (Calc)	mg/L	0.6 - 0.9	0.19	6				
Nitrite+Nitrate as N	mg/L	0.61 - 0.9	>> 0.8	6				
Total Kjeldahl Nitrogen as N	mg/L	0.72 - 1. A	> 1.05	6				
Total Nitrogen as N	mg/L	1.5 - 2-2	1.7	6				
Ortho Phosphorus as P	mg/L	0.81(1.7)	1.1	6				
Total Phosphorus as P	mg/L	Q.84 1.7	1.2	6				

Table 3-2: Intensive Monitoring Period (Nov 28-Dec 18, 2019) - Summary of Influent and Effluent Results (continued)

3.3.2 COD Fractionation

The fractions of influent COD which are biodegradable, non-biodegradable, particulate, and soluble are crucial to effective estimation of plant capacity and performance. The fractionation of the COD has been derived from the intensive monitoring period data, and where possible, validated against the available long term information.

3.3.2.1 Readily Biodegradable COD (RBCOD

The readily biodegradable fraction of the COL determines the extent to which biological phosphorus removal can be achieved with a given influent sewage, and in some configurations has a bearing on the extent of denitrification. The intensive monitoring period data indicated that the readily biodegradable COD was consistently around 15% of the influent COD (range 14.4-17.5%). This gives an k_{bs} of SO 5, which is around the midpoint of the typical range for municipal sewage in South East Queensland. As no long term seconds of this parameter are available, data from the monitoring period has been applied to the analysis without modification.

3.3.2.2 Unbiodegradable-Soluble COD (Fus)

The fraction of the influent COD which is unbiodegradable and soluble (Fus) has been directly estimated using the influent and effluent data from the monitoring period. The Fus was found to be in the range of 0.02 to 0.04, with an average value of 0.03. This value is lower than the 0.05 typically observed in Australian municipal sewage.

3.3.2.3 Unbiodegradable-Particulate COD (Fup)

Given the machine unbiodegradable-particulate COD fraction in determining plant capacity based on solids settling, the unbiodegradable particulate fraction of the COD (F_{up}) has been estimated through calibration of a steady-state process model to the sludge production observed within the existing secondary treatment process. This analysis is summarised in Section 3.34

Due to the significant data gaps in the long-term data to inform this calibration, the F_{up} derived from the intensive monitoring period is considered to be more reliable and representative. To this end, the unbiodegradable-particulate COD fraction (F_{up})

of 0.26 derived from the intensive monitoring period has been applied to the planning. This is marginally higher than the 0.20 to 0.25 typically observed in Australian municipal sewage

3.3.2.4 Slowly Biodegradable COD which is Particulate (F_{xsp})

Influent COD which is neither unbiodegradable (F_{up} or F_{us}) nor readily biodegradable (F_{bs}) is classified as slowly biodegradable. The slowly biodegradable fraction is important in driving denitrification, and also determines the potential for fermentation to convert slowly biodegradable COD to readily biodegradable COD.

The colloidal (F_{xsc}) and particulate (F_{xsp}) slowly biodegradable COD is determined by balancing the constant of soluble COD and soluble BOD. Based on the intensive monitoring period value the F_{xsp} value derived from the data was 0.75, which is in line with the default value applied in the model.

3.3.3 Suspended Solids Load

The mass of inert suspended solids can vary substantially between catchments, and is accurate determination is vital to an accurate solids production estimate. Results for this parameter are limited in the historical influent monitoring results for the plant. However, even where influent monitoring results for inert suspended solids are available, accurate measurement often proves challenging due to:

- 1. Difficulties in obtaining a representative concentration of solids within severe samples particularly given the settling of solids in the inlet works and sewage mains in between pumping events and as a function of flow velocity.
- 2. The relatively low mass of inert suspended solids which are typically filtered from influent sewage in comparison to error imposed by the testing methodology (e.g. residual moisture of ash associated with filter papers). The typical reported uncertainty in measurements of total suspended solids (~5%) and volatile suspended solids (~15%) stems from these challenges.

To assist in generating the most accurate estimate of this parameter possible, the volatile and total suspended solids measured in the bioreactor have been used to calibrate the sludge production within the secondary treatment process, then compared with figures contained in the plant log.

The steady-state analysis is summarised in Section 33.4, and identified average inert suspended solids concentrations consistently in the range 32-35 mg/L through the periods of study. This is within the typical range for Australian municipal sewage.

3.3.4 Secondary Treatment Steady-Stee Model Calibration to Support Influent Characterisation

A steady-state process model has been calibrated to 2018 and 2019 operating data for sludge production and composition, and separately calibrated for the Intensive monitoring period of November-December 2019. The specific function of the calibration was to estimate the key sludge production parameters which cannot be adequately estimated from direct measurement of the influence swage stream (e.g. Unbiodegradable-Particulate COD Fraction (Fup), and Inert Suspended Solids (ISS)).

The steady-state model calibration analysed operations for each quarter of 2018 and the calibration period, by drawing on:

• The extensive operations data in terms of sewage flow, waste sludge flow, mixed liquor solids concentration, alum dose late, and effluent phosphorus concentrations.

Bissolids haulage records (as an independent measure of sludge production and solids capture). Due to intrinsic undertainties in biosolids haulage records (particularly due to variations in dry solids content of the dewatered bissolids cake), the application of these records have been limited to their use as a general check.

Two filtrate sampling results from 2018 (Jan and Dec), which indicated solids capture of 87% in dewatering. This figure was applied to calculation of true sludge age from the model. This result was broadly in line with analysis of the biosolids haulage records over a 12 month timestep, and indicated a solids capture rate in dewatering of approximately 90%. Note that the dewatering filtrate sampling data from the intensive monitoring period was highly

GROUP OR TIREATMENT AND REUSE

variable, with suspended solids results ranging between 12 and 1600 mg/L. This variability rendered the filtrate data largely unusable in the estimation of dewatering solids capture.

- Eight sampling results for mixed liquor VSS/TSS ratio from 2013-2019. These results, while few in number, indicated a VSS/TSS ratio consistently in the range of 79-80%.
- Three mixed liquor VSS/TSS results measured in the intensive monitoring period, which ranged from 83/8 85.3% (average 84.5%).

Using this processed data, unbiodegradable-particulate COD and inert suspended solids in the influent were then estimated for each year of the analysis periods using the following methodology:

- Step 1: Estimate the mass of sludge in the secondary treatment process using the plant log data.
- Step 2: Estimate the sludge age by dividing the sludge inventory by the mass wasted each day.
- Step 3: Develop a steady state model of the process using the influent sewage load (COD, TKN, TP, F_{bs}, F_{us} etc.), the average sludge age (estimated in Step 2), and the average temperature for the relevant period.
- Step 4: Calibrate the model to balance the total sludge production and mixed liquor VSS/TSS ratio through adjustment of the unbiodegradable-particulate COD fraction (F_{up}) and inert suspended solids (ISS).

The results of this analysis are summarised in Table 3-3, and show an excellent fit to the available monitoring and operating data. Overall, while the intensive monitoring period was relatively anon tand therefore may have indicated to shorter-term variations influent quality), the data from this period were more comprehensive and internally consistent. As a result, the intensive monitoring period monitoring is considered to be more reliable, and has been given greater weighting in the influent characterisation adopted for planning.

Rev C

Table 3-3: Victoria Point STP – Stead	ly-State Model Solids Pro	duction Calibration to	o 2018 and 2019 Ope	rating Data	8					
Parameter	Units				Q4 2000	(intensive)				
Input Operational Parameters (Measured or estimated from data)										
Influent ADWF	ML/d (L/EP/d)	5.80 (183)	6.10 (193)	5.7 (180)	3.95 (188)	4.91 (153)				
Influent COD	g/EP/d	122.4	122.4	1224	122.4	122.6				
Mixed Liquor Temp	°C	25.9	22.3	80.5	24.4	26.0				
True SRT (87% solids capture)	days	20.2	19.7	18,8	20.0					
Effluent PO ₄ -P	mgP/L	0.45	0.40	0.31	0.40	1.22				
Alum Dose	mg/L as alum powder	31	9	31	31	0				
VSS/TSS in Mixed Liquor (calibration target)	%			%		84.5%				
VSS/TSS in Mixed Liquor (model output)	%	79.5%	9.3%	79.3%	79.5%	84.1%				
Calibration Error – VSS/TSS	% Error	0.0%	0.3%	0.3%	0.0%	0.5%				
MLSS (calibration target)	mg/L	3218 1	3255	3544	3556	3433				
MLSS (model output)	mg/L	3222	3260	3211	3336	3377				
Calibration Error – MLSS	% Error	-0.1%	-0.2%	9.4%	6.2%	1.6%				
Average Haulage	t/d	11.9	11.7	12.3	12.2	11.9				
Average Dryness (%)		14.7	14.7	14.3	14.1	13.7				
Haulage Sludge Production (target)		1747	1719	1758	1728	1624				
Sludge Production (model output)	kg/d	1515	1572	1622	1585	1483				
Calibration Error – Sluder	% Error	13.3%	8.6%	7.7%	8.3%	8.7%				
Calibration Outpots										
Fup ALL	ratio	0.240	0.244	0.25	0.25	0.26				
Inert Susper Solid	mg/L	32	32	36	36	35				
\mathbb{N}										

Rev C

3.3.5 Nutrient Loads

3.3.5.1 Total Nitrogen

The loads of influent nitrogen are generally on the lower end of those normally observed for Australian nurricipal sewage. An average value was selected based of 10.8 g/EP/d was adopted based on the intensive monitoring period result. This is 3% below the average estimated from the long term data. In the absence of long term nitrogen load has been applied as 15% higher than the average annual result.

3.3.5.2 Total Phosphorus

The average Phosphorus load on the plant is slightly lower than value expected for typical Australian Municipal Sewage, at 1.4 g/EP/d. This result is consistent with the general reduction in influent total phosphorus observed across Australia over the last 8-10 years. Similarly to the nitrogen loads, due to the absence of long term phosphorus load data, the maximum monthly phosphorus load has been applied as 15% higher than the average annual result.

3.3.6 Diurnal Variations in Influent Sewage Composition

The Intensive Monitoring Period included three days of monitoring of diurnal variations in influent and effluent composition. The monitoring was based on 2-hourly composite samples, tested for the many pollutants such COD, suspended solids, nitrogen, and phosphorus. The influent monitoring results are summarised in 1) gure 3-5 and Figure 3-6 overleaf. Note that these plots have been simplified to represent a continuous 12am to 12pm prefile, but are based on stitching the 12am-8am results from the second day of each monitoring event to the 8am 12pm results from the first day of each monitoring event.

- Substantial variations in influent suspended solids whith the diurnal pattern particularly for the December 18-19 monitoring. This may be the result substantial setting of ends in the network upstream of the plant during periods of lower or average flow, and resuspension of the solids with the onset of the morning and evening peak flow periods.
- Relatively large diurnal variations in the inducent concentrations of COD and Total Phosphorus, with the peak in concentration coinciding with the peak term period. The peak in concentrations is higher than often observed in municipal sewage catchments, and may be due in part to the peak in suspended solids.
- The peak in influent nitrogen concentration commencing a little prior to the peaks in COD and TSS. This is frequently observed in municipal servage catchments (due to a greater proportion of the influent nitrogen being soluble rather than particulate), and can have implications for denitrification performance in secondary treatment processes.

The average of the diurnal profiles from each of the three days of monitoring (as shown in Figure 3-6) were applied to the calibration and planning.

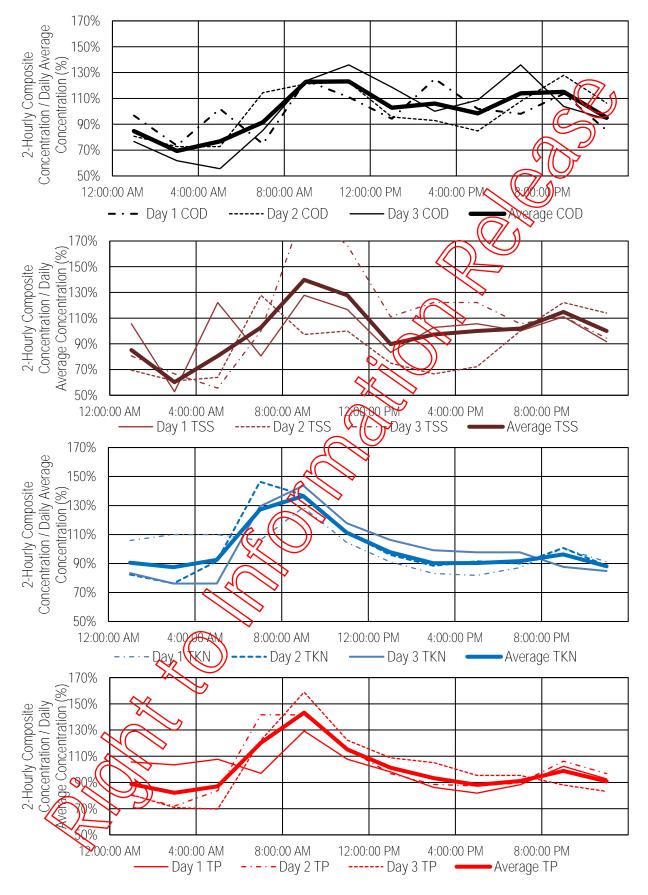
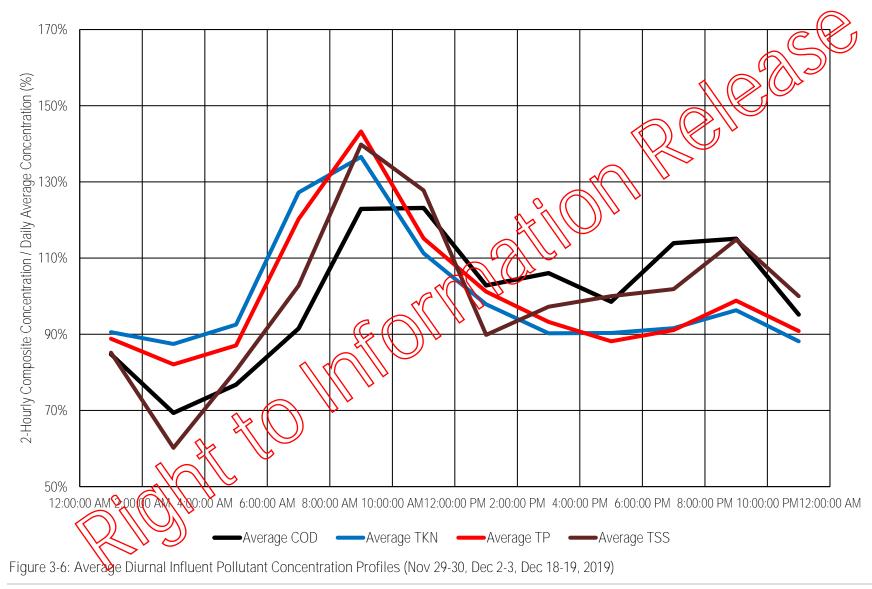



Figure 3-5: Diurnal Influent Pollutant Concentration Profiles (Nov 29-30, Dec 2-3, Dec 18-19, 2019)

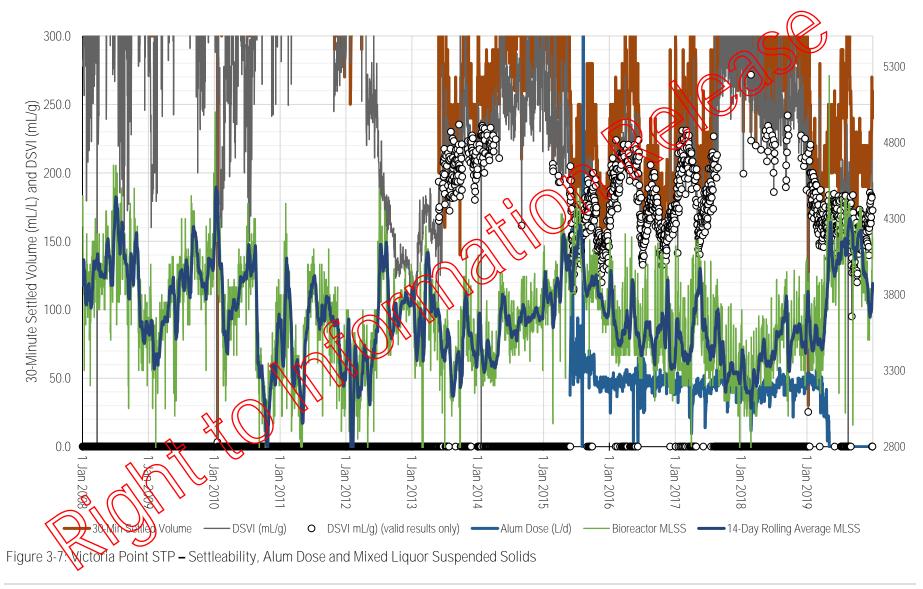
GROUP

3.4 INFLUENT LOADS ADOPTED FOR CAPACITY ASSESSMENT

The influent characteristics adopted for planning, as derived as described in the previous sections, are summarised in Table 3-4. As outlined in the preceding sections, a number of key assumptions have been applied to the generation of these estimates.

Table 3-4: Influent Per Cap					
Parameter	Original Design (2001-2002)	Strategic Planning Review (2009) ("Future Case Conservative")	Applied as Basis of Planning (from Long-Term Data)	November-December 2019 Intensive Monitoring Peri	pplied
Flows and Loads					
Average Dry Weather Flow	220 L/EP/d	190 L/EP/d increasing to 230 L/EP/d by 2025	220 L/EP/d		220 L/EP/d (153 L/EP/d also considered)
Peak Wet Weather Flow to Secondary Treatment Process	5 x ADWF		5 x ADWF		5 x ADWF (1100 L/EP/d)
COD	115 g/EP/d (MML 138 g/EP/d)	126.5 g/EP/d	122.4 9 EP/0 at AAL (Ave Oct 2015-2018)	122.6 g/EP/d	122.6 g/EP/d at AAL 144.7 g/EP/d at MML
Total N	11 g/EP/d	15 g/EP/d	11.19787/d at AAL (Ave 92/2015- 2018)	10.8 g/EP/d	10.8 g/EP/d at AAL 12.4 g/EP/d at MML
Total P	2.5 g/EP/d	3.2 g/EP/d	1.7 g/EP/d at AAL (Ave Oct 2015- 2018)	1.4 g/EP/d	1.4 g/EP/d at AAL 1.54 g/EP/d at MML
Inert Suspended Solids	Back-calc from sludge production: 26 mg/L at AAL 30 mg/L at MML	1M ¹ O ⁿ	36 mg/L at AAL (calibration) 41.4 mg/L at MML	35 mg/L	35 mg/L at AAL 40 mg/L at MML
COD Fractions					
Unbiodegradable Particulate (Fup)	Back-calc fract sludge production: 0.21		0.25	0.26	0.26
Readily Biodegradable 〈 (F _{bs})			0.15	0.157	0.157
Unbiodegradar le Solu (e (F))	Not stated		0.05	0.03	0.03
Ren					

3.5 SLUDGE AGE, SLUDGE SETTLEABILITY AND CLARIFIER DESIGN PARAMETERS


The settleability of the mixed liquor generated within the secondary treatment process is critical to establishing the plant's existing capacity and upgrade requirements. The settleability of the plant sludge, measured as Dilute Sludge Jolume Index (DSVI), has been routinely monitored during operations. Under the DSVI test methodology, the settling Jondon needs to have a sludge volume of 150-250 mL/L at the end of 30 minutes. As shown in Figure 3-7, many of the monitoring results exceeded this range – especially prior to 2013. Fortunately, there remain an average of more than 150 alid DSVI test results for the last 5 years, providing ample data for analysis.

The settleability is plotted with mixed liquor suspended solids and sludge age in Figure 3-7 and Figure 3-8 respectively. Within this data, it is worth noting that settleability is a complex function and not strongly correlated to recorded parameters. For example:

- The data suggests that higher mixed liquor concentrations tend to correcte a more favorable (lower) DSVI. However, the correlation appears to be minor, and may be an artefact of the test methodology rather than process conditions.
- There are anecdotal reports that alum dosing improves settleat ity. The results for Victoria Point STP are somewhat consistent with this observation. In 2013-14, the plant operated without alum dosing, and achieved an average settleability of 212 mL/g DSVI. From 2015 to early (019, an alum dose of approximately 40 mg/L was applied, and a lower average DSVI of 182 mL/g achieved. However, as the average DSVI in 2018 was 217 mL/g with an alum dose of 43 mg/L, this improvement was not consistent enough to make a substantial material impact on the "unfavorable" settleability which should be adopted for planning.
- There does not appear to be any strong correlation between sludge age and settleability. The gradual decline in the plant's sludge age over the last 12 years of operation does not appear to have a marked impact on the settleability (or the range of settleabilities) observed.

Rev C

REDLAND CITY COUNCIL VICTORIA POINT STP – UPGRADE PLANNING FOR NEW DEVELOPMENTS PLANNING STUDY

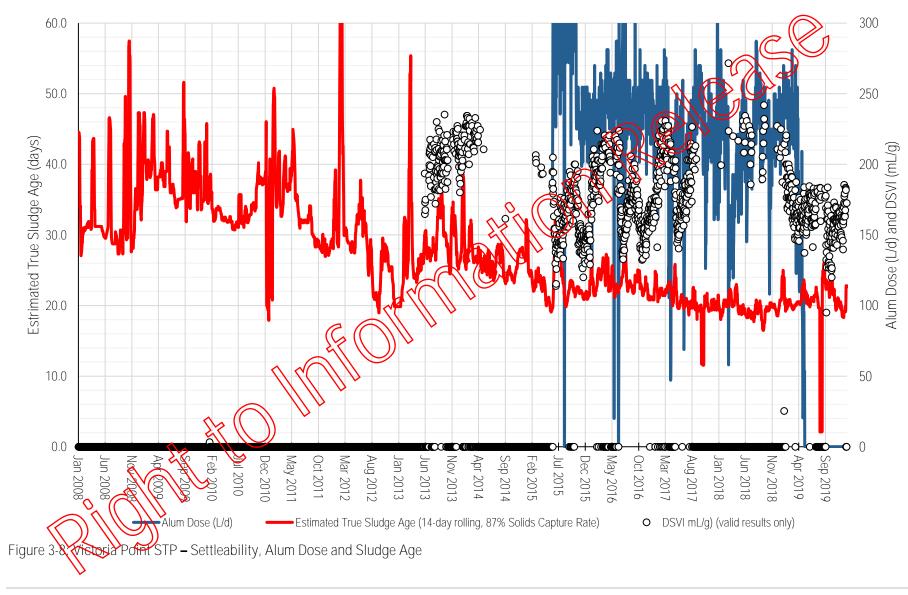


Table 3-5 summarises sludge age and settleability applied to the 2003 upgrade design, 2009 Strategic Planning Review, and adopted for upgrade planning.

Table 3-5: Clarifier Design	Parameters for Previous	Upgrades and Ap	plied for Upgrade Planning

Parameter	Original Design (2001-2002)	Strategic Planning Review (2009) ("Future Case Conservative")	Applied as Basis of Plands Estimated from Moriton Solids Calibration (2018)
Sludge Age	25 days	25 days	15 days (see Sector 3.8)
Mixed Liquor Solids	90 th %ile MLSS = 1.2 x AAL (applied to design)	90 th %ile MLSS = 1.2 x AAL (applied to design)	Maximum Monthly ML96 = 1.17 x AAL Based on: MINMAAL searing factors (1.18 for COB 1.15 for solids and nutrients) 20°C Minimum Temperature
Settleability	185 mL/g DSVI (90 th %ile) Vo: 5.81 m/h n: 0.34 m ³ /kg FST Design Factor = 1.0		205))L/g DSVI (80 th %ile 2013-June 2019) Vo 5.47 m/h n: 0.492 m ³ /kg ST Design Factor = 0.8

The key clarifier design parameters differ markedly between the 2000 upgrade design and the values adopted for the upgrade planning. Key differences are as follows:

Sludge Age: The reduction in sludge age from 25 days to 15 days effectively increases clarifier capacity (by reducing mixed liquor solids concentration). The capability of the plant to achieve the effluent quality requirements at the reduced sludge age of 15 days has been verified by process modelling (see Section 1). Further, operating experience from other oxidation ditches in South East Queensland, and operation of Victor (Point STP at a true sludge age of less than 20 days over recent years, indicates that the lower sludge age represents a found basis of planning.

Peak Mixed Liquor Solids: The peaking factor of 2 appred to the 2003 upgrade design is comparable to the peaking factor derived through application of the adopted maximum monthly sewage loads and the impact of minimum operating temperature (1.17).

Settleability: The settleability adopted for the operade planning is substantially inferior to that applied to the 2003 Upgrade Design in three key respects:

- 1. The settleability (as DSVI) measured on site is consistently inferior to that applied to the 2003 design. The 80th percentile DSVI has been applied to the upgrade planning as adoption of the 90th percentile is considered excessively conservative (given the other design factors applied).
- 2. Clarifier designs underfacent using the Vesilind Flux model rely on published correlations between settleability (e.g. DSVI) and the model parameters V_o and n. The n-value applied to the 2003 upgrade design (0.34) is much more favourable than that derived from the IAWQ correlation (0.47, (Ekama, et al., 1997)), and suggests a settling rate of approximately 1.21 m/h compared to 0.66 m/h for the IAWQ correlation at the design maximum monthly mixed liquor concentration. (In spte of this figure, the clarifiers appear to have been sized based on a settling rate of 0.90 m/h in the 2003 upgrade design. This is equivalent to a DSVI of 142 mL/g under the IAWQ correlation and the maximum solids contentration a very favourable settleability compared to the measured 80th percentile of 205 mL/g DSVI.
- 3. It has become part of sound clarifier design practice to de-rate the peak flux and surface overflow rate for design by a factor of 0.8 to account for the typical non-idealities found when comparing the outputs of the Vesilind Flux theory with the results of stress tests on full scale clarifiers (Ekama, et al., 1997). This approach has been adopted for the upgrade planning.

Sludge Storage in Clarifiers: The upgrade planning has included provision for the storage of sludge in the clarifiers. Sludge storage in the clarifiers serves to increase the clarification capacity by reducing the mixed liquor solids concentration in the clarifier feed. The depth of sludge applied to the analyses comprised:

For Calibration: Up to a depth of 0.82m up the side wall - based on the measured sludge level in the existing plant, and,

For upgrade planning: Up to 0.3m (upgraded plant) up the side wall.

The TSS concentration in the clarifier blanket was assumed to the same as the concentration in the mixed liquor. It does not appear that any provision for clarifier sludge storage was included in the 2003 upgrade design.

Overall, the clarifier design parameters applied to the planning result in:

- A comparable maximum surface overflow rate of approximately 0.86-0.93 m/h for the durrent thant (cf. 0.9 m/h under 2003 design).
- A lower maximum surface overflow rate with addition of a further clarifier or additional reactor volume (primarily due to higher mixed liquor solids concentrations at higher loads).
- 3.6 Environmental Licence Limits for Discharge and Existing Plant E

3.6.1 Effluent Quality Criteria

The effluent quality criteria required under the current Victoria Point STP provide mental Authority (EPPR00874613) are summarised in Table 3-6.

Table 3-6: Surface Water Release Limits from Victoria Point Step	d	Epra	þ	ah	Creek (Release Point W1)
--	---	------	---	----	--------------------------

Parameter	Min	Long Term 50 th %ile	Short Terran 50 ¹¹² %	Long Term 80 th %ile	Short Term 80 th %ile	Max
Design ADWF (ML/d)						8.5 (98.4 L/s)
Max Inflow (ML/d)			Ň			42.5 (491 L/s)
BOD ₅ (mg/L)		A		10 mg/L	15 mg/L	30 mg/L
Suspended Solids (mg/L)		A	\searrow	10 mg/L	15 mg/L	30 mg/L
рН	6.5		>			8.5
Dissolved Oxygen (mg/L)	2	()				
		3 (2 @ ST 2)	5 (3@ St 2)			9 (6@ St 2)
Total N (mgN/L) ^{Note 1}		\bigcirc	Mass Load must	not exceed 13.5	kgN /d	
Total P(mgP/L) ^{Note 1}		4@ St 2)	10 (6@ St 2)			15 (12@ St 2)
Free CI (mg/L)		\diamond				0.7
Faecal Coliforms	()	150 cfu/100ml (median of 5 samp	les), 600 cfu/100	0ml (4 out of 5 s	amples)

Note 1: The existing Environmental Authority states "Second stage Nitrogen limits shall come into effect when the long term 50th percentile Nitrogen load from the plant percent and 2 kgN/d. The long term 50th percentile total effluent Nitrogen load from the plant must not exceed 13.5 kgN/d. Second stage Phosphorus limits are based on blend of 6.9 mgP/L from the existing plant and 2 mgP/L from the new plant". However, the plant is required to achieve better than the Stage 2 concentration limits to comply with the 13.5 kgN/d mass load limit (see Figure 4 19).

The 13.5 kgN/d mut for botal nitrogen has been the subject of substantial consultation with the regulator, stretching back to 2002. The imit was derived as an estimate of the prevailing mass load of nitrogen discharged to the Eprapah Creek by the plant prior to the 2003 upgrade. Under analysis undertaken by GHD at the time of the upgrade (de Haas, 2003), it is understood that the mass load of 13.5 kg/d was estimated based on grab samples of effluent collected at approximately 8am each say. As the effluent total nitrogen concentration was much lower at 8am than at other times of day, the actual nitrogen mass load during this period was likely to be substantially higher, and was estimated to be 21.3 kgN/d. This figure was not reflected in the plant's Environmental Authority at the time. Subsequent efforts to have DES modify the limit to 21.3 kg/d (including in 2003, 2010, and 2017) have not been successful.

As background to future development of the plant, and discussions with DES, the assimilative capacity of Eprapah Creek is currently being modelled. To this end, specific areas of investigation within this project include:

- Ability to tolerate total nitrogen loads (for example, loads exceeding 13.5 kgN/day);
- Potential benefits (in terms of acceptable nitrogen loads) of relocation of the STP's discharge location coser to the mouth of Eprapah Creek;
- Potential benefits (in terms of acceptable nitrogen loads) of confining the STP's effluent discharge to ebb tide, and,
- The scope to deliver reduced nitrogen loads to Eprapah Creek through nutrient reductions from other sources (offsets).

Preliminary advice from the specialists undertaking the modelling suggests that nitrogen ascharges will remain the key pollutant of concern for Eprapah Creek in the future. By contrast, the STP dry weather for and phosphorus loads are not expected to be the critical parameters impacting **the creek's health**.

The environmental modelling is scheduled for completion in July 2020. Pending completion of this analysis, the upgrade planning has assumed that the concentration and mass load limits within the current licence will be retained into the future – including the critical limit for the existing mass load limit of 13.5 kgN/day of total sitrogen.

The upgrade planning has been based on:

- 1. Maintaining effluent total nitrogen mass loads at less than 13.5 kg/vay-inder average annual loading conditions with temperature at or above the annual average of 23.9°C. Apple at on this criteria means the Stage 2 long-term median total nitrogen limit of 2 mg/L will be met.
- 2. Meeting the Stage 2 short term median total nitrogen concentration limit of 3 mg/L at the critical loading conditions of maximum monthly sewage loads and a minimum operating temperature of 19.5°C. While the wording of the existing Environmental Licence is ambiguous in relation to the transition from Stage 1 to Stage 2 limits, the Stage 2 nutrient limits have been applied as they appear to be nost consistent with the planning applied to the original 2003 plant design. Additionally, within this second criteria, the predicted level of exceedance of the maximum TN mass load limit of 13.5 kg/d under these "worst case" operating conditions must be minor to be consistent with the need for median concentration limits to accommodate short (term process disruptions due to equipment outages or other issues.

3.6.2 Historical Effluent Total Nitro

The long term median effluent total ditrogen of the plant has been analysed on an annual basis for 2014 through 2018, and for the period of January through May of 2019. As shown in Table 3-7, the results range between 1.40 mg/L and 1.90 mg/L. The data also suggests no significant correlation between effluent TN concentration and annual rainfall.

Year	Annual Rainfall (mm)	Annual Median Effluent Total Nitrogen (mg/L)
2011	1584	
2022	1384	
2012	1480	
2 4	838	1.40
	1503	1.60
()2019	791	1.90
2017	1121	1.40
2018	1096	1.40
2019 (January to May)	456	1.90

Table 3-7: Victoria Point Term (Annual) Median Effluent Total Nitrogen and Annual Rainfall

Note: Time weighted composite effluent samples.

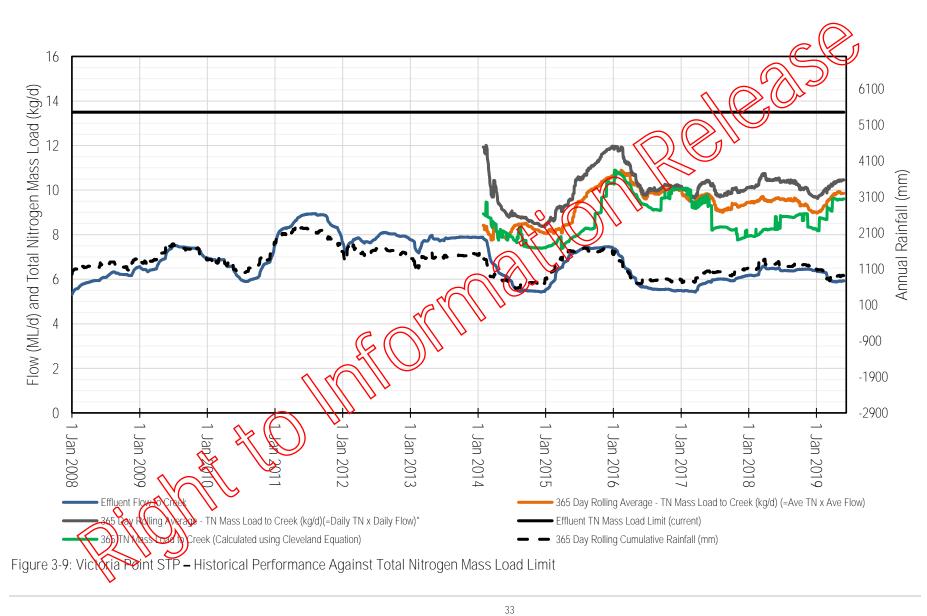
The mass load limit of 13.5 kgN/d effectively reduces the acceptable long-term median effluent total nitrogen concentration which can be discharged from the plant. As the mass of effluent nitrogen is also a function of flow, the prevailing annual per capita flow (which in turn is strongly influenced by annual rainfall) is also critical.

As shown in Figure 3-9, the compliance of the plant with the total nitrogen mass load limit has been robust over the last 5½ years. This has been the result of:

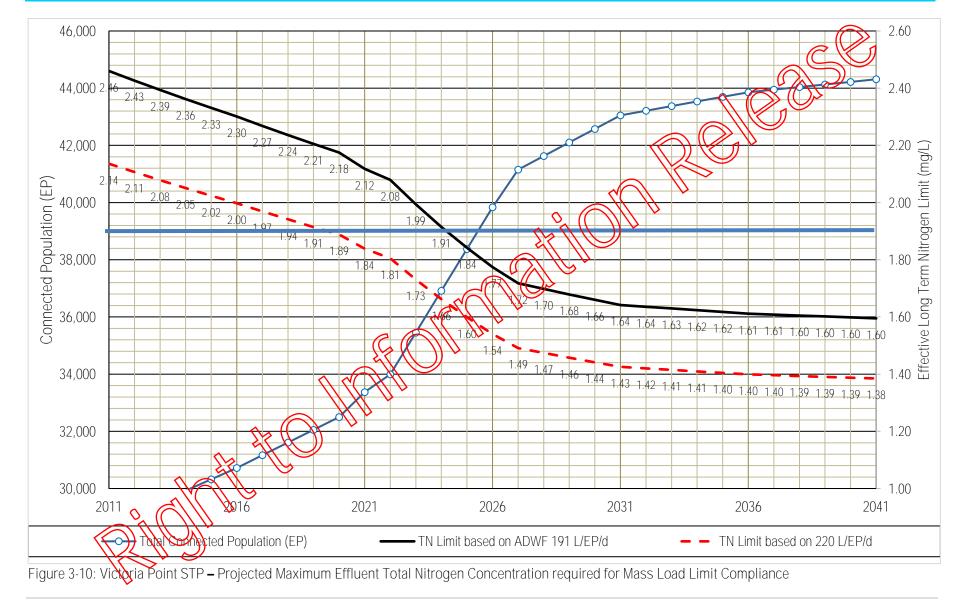
- Low annual rainfall (and Dry weather per capita flows of less than 220 L/EP/d) for all years (xcort 2015.
- Long term median effluent total nitrogen of substantially less than 1.90 mg/L in 2014 ((.42 mg/L), 2015 (1.60 mg/L), 2017 (1.40 mg/L) and 2018 (1.40 mg/L).
- Some effluent reuse at the Redland Bay Golf Club (2.4-5.3% of average flow)

3.6.3 Effective Total Nitrogen Limit

Figure 3-10 shows the maximum effluent total nitrogen concentration based on the projected connected populations and per capita flows. This analysis effectively assumes that wet weather flow reports are excluded from the data set under the wet weather criteria applied in the Cleveland STP licence (see Criteria 2 under Section 3.2). The chart additionally shows the required nitrogen concentrations at the average per capital flow under Section 3.2). The last four years (191 L/EP/d), which represents an upper bound which would be acceptable in years of over prinfall. Alternative calculation methodologies which directly consider wet weather flows would require lower effluent total nitrogen to be achieved.


The horizontal blue line on Figure 3-10 the shows the upper end of the range of annual median effluent total nitrogen limits achieved in the last 5½ years of operation (1.90 mg/L). As shown Figure 3-10, the existing plant would be at risk of exceeding its mass load limit for total nitrogen where:

- The long-term median effluent total nitrogen concentration is at the upper end of the range achieved by the plant over the last 5 years;
- The per capita flow is at 220 L/EP/d or more. Analysis of flows over the last 6½ years suggests that the current catchment is likely to deliver per capita tows a) or above this value in years where the total rainfall is approximately 1500mm. Long term rainfall records for Redland Bay (41 years) and Mt Cotton (86 years) indicate that annual rainfall is at or above this level for one out of every three years, AND,
- Effluent reuse is negligible or not substantially increased from that achieved in recent operations. The Redland Bay Golf Club reuse have historically ranged between 2.4% and 5.3% of the average effluent flows over the last 5 ½ years, with the lowest usage of recycled water coinciding with wet years.


However, subsequent analysis (Section 5.2.2) indicates that the high effluent total nitrogen is likely at low per capita flows, with the risk of exceedance of the attrogen mass load limit substantially increased from 2025 under the projected increase in sewage flows.

3.6.4 Effluent Nitrogen Components and Refractory Dissolved Organic Nitrogen

Refractory Dissolved Organic Nitrogen (known as rDON, F_{nus} or TKN_{us}) passes directly through conventional biological treatment processes without modification, and is also generated in activated sludge. As rDON emerges in the plant effluent, its concentration has a direct bearing on the maximum inorganic nitrogen which can be permitted in the plant effluent without exceeding the licence limits. This is critical for establishing the ability of the plant to achieve lower effluent total nitrogen concentrations using conventional biological processes in the future.

The rDON in the effluent, as estimated from the effluent TKN, ammonia and suspended solids results is sted in Table 3-8. Based on this analysis, a maximum median rDON of just under 0.7 mg/L was applied to the Place 1 upgrade planning. This value is at the lower end of the long-term median values typically observed in South Last upgensland.

However, the average rDON estimated from 24-hour effluent composite samples during the intensive monitoring period was substantially higher at 0.91 mg/L (range 0.68-1.04). While it is important to note that the low per capita flows (153 L/EP/d) during the intensive monitoring period may have contributed to the higher rDON recorded during this period, the potential impacts of a higher rDON concentration of 0.91 mg/L has been considered in the upgrade planning.

Table 3-8: Victoria Point STP – Long Term (Annual) Median Effluent National Species

Period	Ammonia (as N) (mg/L)	Oxidised N (mgo)	(mg/L)	Estimated rDON (assuming nil solids)
2014	0.032	058	1.4	0.63
2015	0.02	110	1.60	0.54
2016	0.018	V1 P	1.9	0.7
2017	0.013	C & V	1.4	0.68
2018	0.021	0.71	1.4	0.68
2019 (to May)	0.018	1.1	1.9	0.69
2014-May 2019	0.02	0.85	1.50	0.67
Intensive Monitoring Period	@.0 9	0.77	1.78	0.91

Note: Flow weighted composite effluent sangles.

Importantly, the oxidised nitrogen concentrations shown in Table 3-8 indicate that the effluent ammonia concentrations are very low on average, but that there is substantial scope to reduce the effluent Total Nitrogen achieved by enhancing oxidised nitrogen removal in the secondary treatment process.

3.6.5 Ammonia Removal though Breakpoint Chlorination

The presence of chlorine in a substantial excess to ammonia (CI:N ratio of ~9 to 1), which may currently be occurring for substantial periods of time in the chlorine contact tanks of Victoria Point STP, can result in further ammonia oxidation through 'breakpoint chlorination'' In an effort to understand the likely extent of ammonia removal via this mechanism in the existing plant operations, gran samples of filtered effluent were collected during the intensive monitoring period, and compared to the final effluent (post chlorination). The results of this analysis are summarised in Table 3-9. While the sampling results are not conclusive, they suggest that breakpoint chlorination <u>may</u> be having a minor impact on the effluent ammonia concentrations.

Ammonia Nitrogen Result	Units	Nov 29 ~9am	Dec 4 8:35am	Dec 9 ~9am	Dec 11 9:05am	Dec 13 9:00ar	Dec 16 9:00am
Filtered Effluent Grab	mg/L	0.038	0.027	0.150	0.026	0.034) 0.41
Final Effluent 24h Composite	mg/L	0.034	0.054	0.076	0.020	0,027	0.037
Final Effluent 2h Composite	mg/L	0.027	0.25 (8-1	10am, Dec 2	2.) 0.067	(8-tham Pe	ec 18)

Table 3-9: Filtered and Final Effluent Ammonia Sampling Results - Nov-Dec 2019.

3.6.6 Maximum Effluent Flow

The existing Environmental Licence for Victoria Point STP states that "*Inflows must not exceed the peak design capacity of 5 times the Design Average Dry Weather Flow (DADWF) of 42.5 ML/d (DADWF = 8.5 ML/d)*" (Condition No. G4-1). Considered in isolation, the wording of this condition is somewhat ambiguous in relation to 1)

- Whether the average dry weather flow to the plant must not exceed 8.5 ML/a, or,
- Whether it is acceptable to treat peak flows less than 5 times the average dry weather flow particularly where the average dry weather flow exceeds 8.5 ML/d.

A conservative interpretation of the existing licence would mean that new theory would potentially be required:

- 1. Once the average dry weather flow to the plant exceeds 8.5 MLA
- 2. To augment the plant capacity to more than 8.5 ML/d ADWF capacity

Under this interpretation, a per capita flow of 220 L/EP/day may require a new discharge consent from DES once the connected population exceeds approximately 38,600 EP. The projected growth associated with the South West Victoria Point and Weinam Creek developments would see this limit exceeded in 2025.

Counter to this interpretation, DES may consider the view that no new licence will be required as the proposed upgrades are not intended to increase **the plant's** capacity above the range of the current Environmentally Relevant Activity (63-1(e) Sewage Treatment 10,000-50,000 EP). This world also be in line with preliminary expectation that increases in effluent flows to Eprapah Creek (in the absence of additional collutant loads) are not expected to have an adverse impact on the health of the waterway (Pers. Comm., T. McAlister, December 2019).

In the absence of specific information on what new conditions might be applied, the upgrade planning has considered that the current effluent quality and mass load limits in the existing Environmental Authority would continue to apply under a new approval.

3.6.7 Peak Wet Weather Flore Treatment

In line with the design basis applied to the 2003 upgrade, the upgrade planning has been based on transfer and full treatment of all flows up to five times the average dry weather flow (at 220 L/EP/d).

3.7 RECYCLED WATER QUALITY

In the absence of details of the existing effluent reuse to the Redland Bay Golf Club, the design has assumed that no further treatment of the activent is required to meet the requirements of the Recycled Water Management Plan.

3.8 ENDERINGEDODE

The EndocVVaste (EoW) code for Biosolids was issued by the Queensland Government under the *Waste Reduction and Recycling Aso2011* (WRR Act), and became effective on January 1, 2020 (Department of Environment and Science, 1 Jan 2020). The code defines the requirements and conditions under which biosolids can be beneficially used as a resource in urban and rural land applications. Biosolids which do not meet the requirements of the code will need to be managed as a waste stream (which would generally be an inferior environmental outcome and attract much higher costs).

The issued EoW code includes the "Barrier options" for achieving Grade B biosolids stability using practices where:

- Biosolids are injected below the surface of the land, or,
- Biosolids applied to the land surface are incorporated within six hours of application on the land.

These stabilisation options are included in the USEPA and NSW Guidelines for Biosolids Reuse, and are thectly relevant to the planning of Victoria Point STP's upgrades by enabling reuse of biosolids generated within secondary treatment processes with sludge ages as short as 12 days without further processing - provided the solids do not represent an "undue risk" associated with high pathogen concentrations or excessive unstabilised solids. The core menutes undue risk to be processes which are achieving less than 1-log pathogen reduction compared to primary sewage for the relevant indicator organisms.

This enables the upgrade planning to be based on the minimum sludge age required for additional biosolids stabilisation (e.g. through digestion accompositing).

3.9 REDUNDANCY

3.9.1 General

Redland City Council applies Duty/Assist redundancy as a general approach to all mechanical equipment. This principal has been applied to the development of the plant, under the interpretation the capacity to treat or pass the peak loading of any process unit is met with all parallel elements in service.

The redundancy of the oxidation ditch aerators is based on a device standby configuration (as per the current operations). As the positions of the three installed aerators are fixed, Aerator No. 2 are normally operated, with Aerator No. 3 only operating at times when one of Aerator No.1 or No. 2 are out of service. An alternative feed location is provided for periods when Aerator No. 1 is out of service.

In relation to secondary clarification, the redundance sciteria applied has been expanded to consider:

- Treatment of peak wet weather flows up to 5x ADWF (see Section 3.6.7) with all clarifiers in service, and,
- Treatment of peak dry weather flows with one clarifier out of service.

The new blowers for the Re-Aeration Zone base been configured in a duty/standby arrangement. This approach has been adopted as the failure of a single blower under a duty/assist configuration would not have sufficient capacity to treat the peak diurnal load at the planning horizon.

3.9.2 Bioreactor Redundarity

The upgrade planning has been based on retention of a single bioreactor (as per the existing plant). As an additional reactor is not required to achieve the projected process capacity, provision of a second reactor unit would add substantial costs. This means that the criging reactor will not be able to be taken out of service for repairs or maintenance through to the planning horizon (at least). Given the known structural issues in the oxidation ditch structure, this represents a risk to Redland City Council.

A high level core estimate has been developed for duplication of the existing Victoria Point STP oxidation ditch. Based on the key universestimates make uses, and contingency applied in this investigation (see Section 7.1), the estimated cost to duplicate the existing oxidation ditch has been estimated as \$18.7m. As the reactor volume in the existing plant does not directly constrain the plant capacity, this considered to be a high cost for resolution of the issues in the existing structure.

Previous investigations by Redland City Council **considered use of the existing, disused 'old plant' to provide treatment while** the Oxidation Ditch is taken out of service for repairs. While the studies indicated that effluent TN levels <10mg/L may be achievable, extensive additional analysis would be required to verify the viability of this option. Use of the existing disused plant structures (either as temporary liquid stream treatment, or permanently as part of the sludge stream), would require a

detailed structural assessment in order to ascertain viability, and to determine the scope and costs of required refurbishment measures.

3.10 CONDITION OF EXISTING PLANT INFRASTRUCTURE

The initial existing plant visual condition review (which was limited in scope to general condition observering without detailed or invasive inspection) noted the following elements of concern:

- Oxidation Ditch Visual evidence of concrete deterioration and limited cover to reinforcement. Oracking resulting in loss of containment, which was under repair during the site visit of June 2019. In the absence of additional information, the study has assumed that the repaired oxidation ditch will be suitable to angular through to the planning horizon. As noted in the previous section, the cost to duplicate the existing reactor is very high compared to the likely repair costs.
- Oxidation Ditch Aerator Covers Severely corroded, require removal apartor replacement (depending on noise).
- Dewatering Building Extensive corrosion to both structural steel and classified. Repair and/or replacement of key elements required.
- Existing Gravity Drainage Decks / Belt Filter Presses The existing (EMAGDD/BFP appears to be in reasonable condition, but is at risk of becoming obsolete within the next 5 years. The existing AJM belt press is in poor condition, and is largely obsolete (creating difficulties in maintenance). Both machines require extensive maintenance to remain operational. They also perform relatively poorly, achieving a relatively poor dry solids concentration in the dewatered biosolids product of on 22-14%. Due to the condition of the existing dewatering system, the options for upgrading the dewatering system are currently under investigation as a part of the separate project.

In general, metalwork within the existing disused plant's discretations and clarifiers is in very poor condition. The concrete structures, however, appear to be generally intact, and optimized suitable for ongoing service with refurbishment.

Rev C

4 DYNAMIC PROCESS MODEL DEVELOPMENT AND CALIBRATION

In order to accurately assess the capacity of the existing secondary treatment process and inform the concept design of the upgrades, a dynamic BioWIN model of the existing plant was developed and calibrated. Given the very low effluent total nitrogen currently achieved by the plant, and the need to further enhance nitrogen removal in the future, the process model calibration pursued a high degree of accuracy. To generate the most accurate model possible, the follow comproach was applied:

- Whenever possible, actual plant operating data was used to calibrate the plant model, ingesting:
 - Flow rates for Influent Sewage, RAS, and WAS.
 - o Aerator speeds.

For each of these parameters, 30-minute average values were derived from the SCADA historian.

- The 19-day period of December 1st to 19th, 2019 was selected for the cateriation as it coincided with the characterisation program, providing the most accurate influent and operating data on which to base the model.
- The average sewage characteristics and diurnal influent sewage pollutant concentration patterns for COD, TKN, and TP derived from the characterisation period were applied. Diurnal changes in the influent total suspended solids were not applied, as this has been consistently shown to not be required to achieve a dynamic model calibration.
- As discussed in Section 3.3.4, the available samples for the solids concentration in the dewatering filtrate were highly variable. On this basis, the capture in the belt press during the calibration period was estimated using the limited historical filtrate monitoring data (which gave an estimated solids capture of 87%), as validated using the sludge haulage records and the steady-state process model calibration.
- The oxidation ditch was modelled as a series of thirty signeactor cells to represent the plug flow nature of the Victoria Point reactor configuration (see Figure 4-1). This configuration also allows for relatively accurate comparison of key parameters, such as disserved oxygen) at specific points in the bioreactor. A ditch velocity of 0.20 m/s, which is at the lower end of typical values was applied based visual observation of the surface flow within the bioreactor during site visits.
- Two model clarifiers were used, each with dimensions to represent the units installed at Victoria Point. As a part of this approach, the total volume of studge to the model clarifier was compared to values reported onsite to ensure that it was an accurate representation of the plant for the period of study.
- On-site measurements of perator power and current draw as a function of speed were collected for each aerator. This data was used to establish the elationship between power input and aerator speed in the model. Table 4-1 summarises the collected data from site and applied to the modelling of aeration.

	Table 1 1. Victoria Chine and Power Consumption, Recorded March 17, 2020								
	Aerator	Speed (Hz)	Speed (%)	Power Consumed (kW)					
		30	60	27					
		40	80	54					
		50	100	103					
		30	60	27					
\mathcal{K}	0.2	40	80	59					
		50	100	100					

Table 4-1: Victor Power Consumption, Recorded March 17, 2020

• Two very small reactor cells were added to the model represent the additional aeration from the bioreactor weir outlet and the RAS screen.

• As no alum dosing was undertaken during the period selected for calibration, it was not included in the model.

Calibration Method

- The calibration was performed to achieve the best match possible to the monitoring results for suspended solids, total nitrogen, ammonia, nitrate, total phosphorus, and phosphate both in the bioreactor and final student.
- In the first instance, the efficiency of the surface aerators was adjusted in the model to provide a match to the measured dissolved oxygen concentration. Unfortunately, the configuration of the aerators and dissolved oxygen instruments leads to an unstable model configuration where very small changes in the aerator efficiency resulting in large changes DO (i.e. from 0 to 5 mg/L), or the model outputs are unstable (and unrepeatable). To overcome this limitation, control logic was developed in the BioWin Controller add-on to accurately mimic the aerator speed control in the plant.
- Even with the actual measured DO accurately met by the model, the fit of an more a vitrate, and nitrite was initially relatively poor, with results suggesting insufficient nitrification and excess devirification compared to the observed plant performance. On this basis, a review of the DO profile within the oxidation ditch was carried out by Redland operations personnel using a handheld instrument. While not conclusive, the monitoring confirmed that is substantial variation in the DO concentration achieved at various lotations both along the path length of ditch, and across the channel. On this basis the measured DO reported from the site data was increased to achieve the observed performance. The total fit to the observed aeration input power remained excellent even with this change.
- The calibration philosophy was based on minimising the number of kinetic and stoichiometric parameters modified from the BioWIN default values. Despite some known divergences between the BioWIN model and BNR microbiological processes, it is our experience that making a large number of poorly or partially supported changes reduces the applicability and confidence in the final model. For this calibration, the plant operating conditions, coupled with the high degree of accuracy demanded by the stringent licence requirements, a relatively large number of changes to default parameters was required. These were:
 - AOB Substrate Half Saturation reduced to 0.3 mg/L (from 0.7 mg/L) to provide the low level of Ammonia observed in the final effluent. Modifications to substrate half saturations are not typically required.
 - PAO Anoxic Growth Factor reduces to 0 from 0.33 to eliminate anoxic P uptake to better match the level of denitrification and efficient phosphate. Modification of the anoxic growth factors is infrequently required, but was necessary to reduce the extent of phosphorus removal reported by the model in this case.
 - NOB Max Specific Srowth rate increased to 1.5 /d from 0.7 /d and Substrate Half Saturation increased to 0.05 from 0.1 to reduce the nitrite and increase the nitrate in the final effluent as reported by the model. More recent madel calibrations have sometimes required amendment of this parameter to prevent nitrite levels in the effluent ar exceeding those observed in practice.
 - AOB DOWHalf Saturation and NOB DO Half Saturation decreased to 0.05 mg/L from 0.25 and 0.5 respectively. Modifications to these parameters are typical for processes where the dissolved oxygen is not parformly maintained outside the concentration where simultaneous nitrification and denitrification is known to cour, such as oxidation ditches or intermittent processes.

Calibration Resolution, the fit of the model to the observed plant performance is considered reasonably good as shown in Figure 4-2 brough Figure 4-14. More specifically:

- The model's fit with respect to effluent ammonia, nitrate and total nitrogen is considered excellent (see Figure 4-5 to support of the second second
- The fit with respect to effluent phosphate and total phosphorus (see Figure 4-8, Figure 4-9, and Figure 4-12) is not
 as good the nitrogen species, but is still considered acceptable. Previous projects have demonstrated that BioWin

may overpredict excess biological phosphorus removal under low or transient DO conditions (such as those which occur at Victoria Point). Given that the phosphorus removal requirements are relatively lenient compared to the nitrogen removal requirements, and that additional phosphorus removal can be readily achieved with chemical dosing, this is not considered a significant limitation.

• The average solids inventory predicted by the model was within 2% of the results of the characterisation period (see Figure 4-4), and 8% of the values reported in the plant log. Both of these figure fare well within the recommended 10% error range (Rieger, et al., 2013).

Table 4-2: Dynamic Process Model Calibration Evaluation

Parameter	Mean of Residuals	Absolute Mean of Residuals	Root Mean Square Error	Target Value
Effluent Ammonia	0.05	0.07	0.1	1.0 mg/L Note 1
Effluent Nitrate	-0.07	0.12	0.16	1.0 mg/L Note 1
Effluent TN	0.10	0.18	0.19	1.0 mg/L ^{Note 1}
Effluent Phosphate	0.82	0.82	0.90	N/ANote 2
Effluent TP	0.85	0.85	0.91	N/A ^{Note 2}

Note 1: Recommended target for assessing plant capacity for nitrogen removal using dynamic modelling. Monthly or annual average (Rieger, et al., 2013)

Note 2: No recommended target for assessing phosphorus remained dynamic modelling (Rieger, et al., 2013)

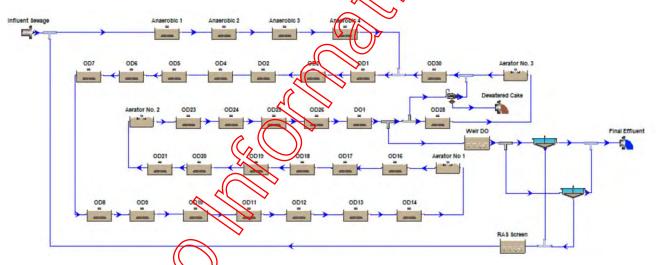
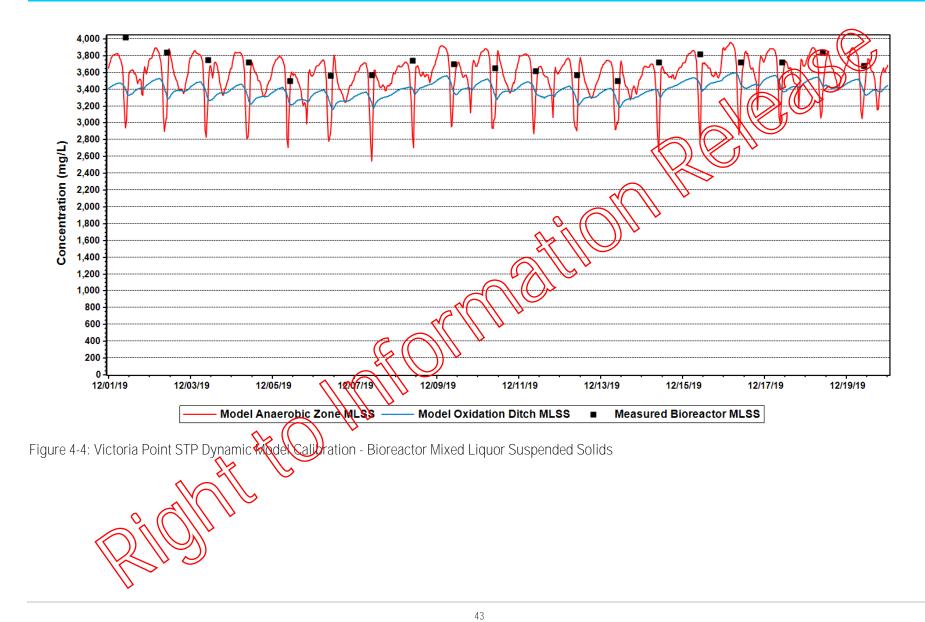


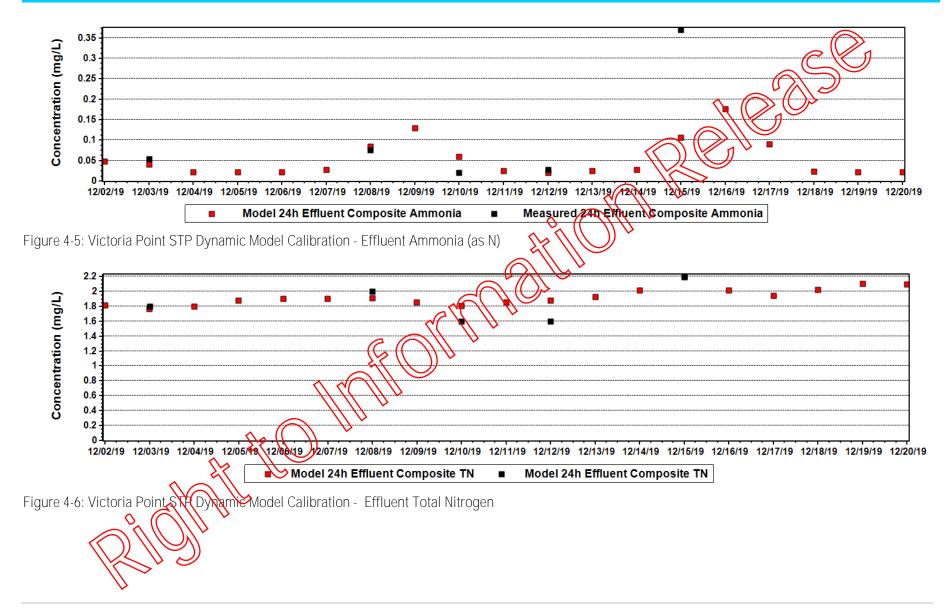

Figure 4-1: BioWIN Process Model configuration – Existing Victoria Point STP

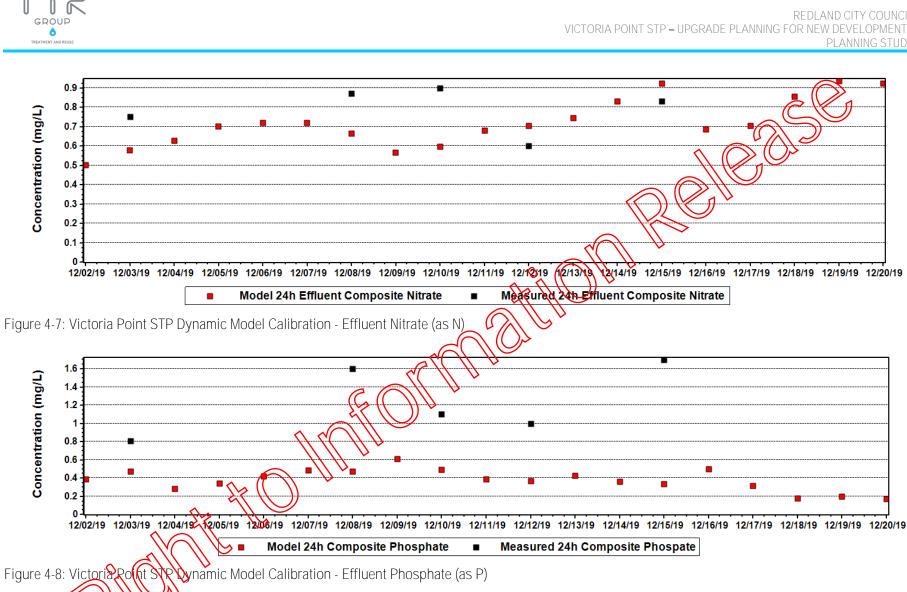


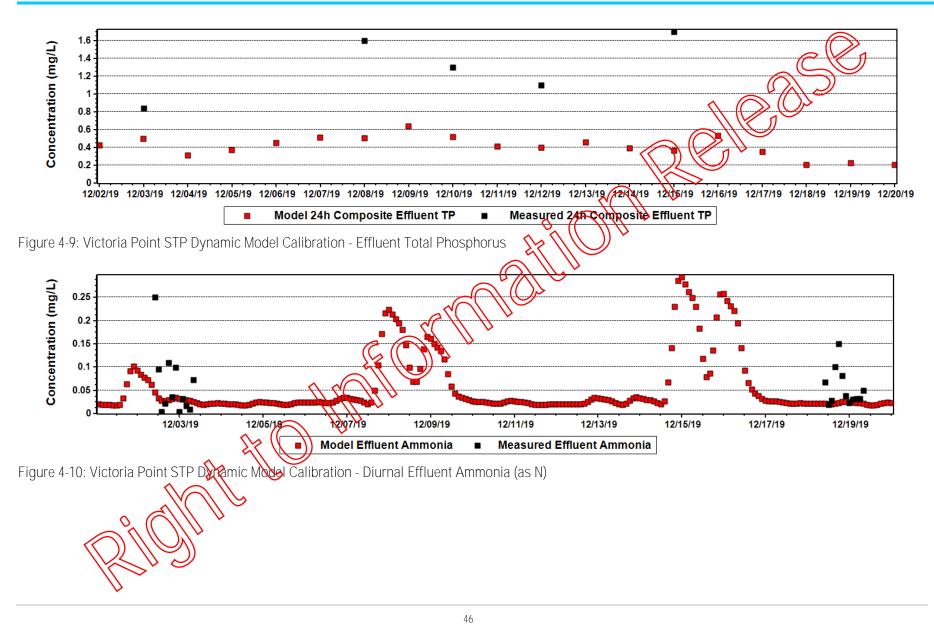
GROUP

6

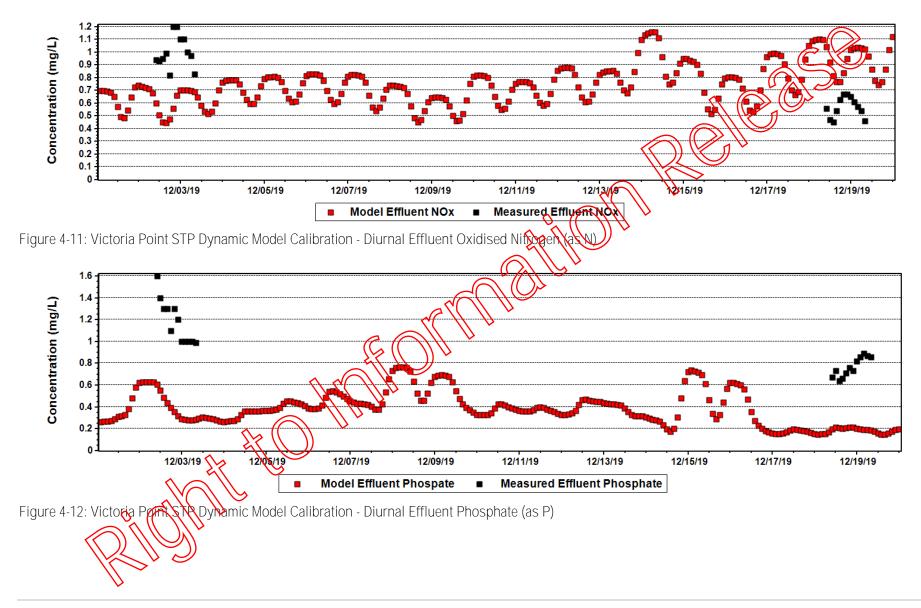
REATMENT AND REU


REDLAND CITY COUNCIL VICTORIA POINT STP – UPGRADE PLANNING FOR NEW DEVELOPMENTS PLANNING STUDY

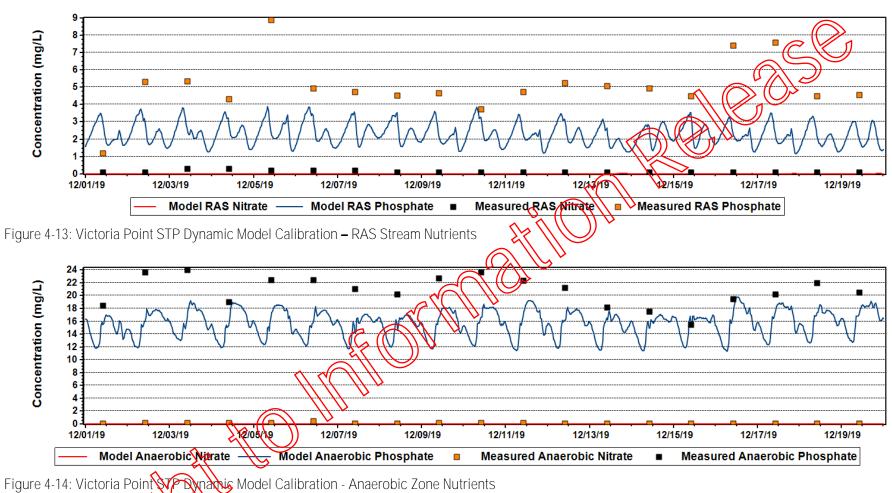

GROUP


6

TREATMENT AND REUS



GROI


GROU

GROUP

0

TREATMENT AND REU

RIO

GROU

0

REATMENT AND REU

5 EXISTING PLANT CAPACITY

5.1 HYDRAULIC CAPACITY

The existing plant has been modelled to identify the hydraulic capacity of the installed infrastructure. A reformummarising the inputs, outputs, assumptions, and limitations of the hydraulic analysis is provided in Appendix A.

The assessment was based on the requirement of the Plant to pass 565 L/s (plus an additional 400 k RAS) in the relevant units), based on the following key assumptions:

- Per capita flow of 220 L/EP/d
- Design connected population of 44,398 EP, approximately equal to the 44,312 EP projected for 2041.
- Peak wet weather flow condition of 5xADWF
- Minimum freeboard of 300mm

Note that minimum freeboard of 500mm is routinely applied as the hydraulic design criteria for aerated vessels, but the 2003 design of the oxidation ditch (which features enclosed aerators) applied a minimum freeboard of 300mm which has been carried forward to this analysis.

Limitations on the system to meet the above requirements, as listed in the hydraulic report are:

Inlet pumps - The existing pumps operating in a duty/assist configuration have an estimated peak capacity of 525 L/s. This is substantially less than the 565 L/s required to meet the design criteria adopted for upgrade planning. Additionally, it is anticipated that the existing pumps will suffer from cavitation under this operating condition.

However, two new pumps have been ordered for the Vistoria Point WWTP inlet pump stations, and are expected to be delivered and installed in August 2020. The new pumps have been sized to deliver 300 L/s with a single duty unit, and 550 L/s with both units operating at the nominated top water level in the pump stations.

However, RCC have advised that the selected inlet pumps will theoretically deliver the 565 L/s required once the water level in the well increases to 0.4m above the normal top water level. This level would still be 1.0m below surcharge. At 1.5m above the normal top water level (i.e. the level at which surcharge commences), the pumps are expected to deliver a combined flow of approximately 590 L/s. As such, the upgraded pumps will be sufficient for the projected 2031 load if the South West Victoria Point and Weinam Creek developments proceed.

- Inlet channel The limited availability of information concerning the losses through the step screen, grit screw and grit trap, has prevented vertication of their capacity in the hydraulic model. However, experience during extreme wet weather events indicates the inlet works has sufficient capacity for the peak influent sewage flow delivered by the existing raw sewage pumps (~525 L/s). Further, the change in raw sewage screens identified under this project we provide scope in increase hydraulic capacity through inlet screening channels.
- Filter feed pumps The performance data from the existing pumps provided does not match the analysis for single pump duty. Due to continuous and variable rate of discharge of flows to the filter feed tank, and the lack of flow measurement of the filter inflow or outflow, it has not been feasible to independently verify the actual flow delivered by the fiber feed pumps in operation, or their capacity.
- Filtere The existing filters may not be sufficient to meet the entire 3xADWF capacity applied to the 2003 upgrade design. However, it is noted that filtration of flows to 3 x ADWF is not specifically required for licence compliance, and acceptance of a lesser peak throughput is anticipated to be sufficient for this process unit based on the licence requirements and frequency of wet weather events.

¹ The new pumps are Wilo 55 kW 6 pole FA25.93T pumps with FK34.1-6/33 motors.

Subsequent to the hydraulic analysis, the RAS flow achieved by the existing pump stations was measured on-site. With two of the three pumps in each pump station operating simultaneously at 100% speed (4 pumps in total), RAS pump station 1 delivered 190 L/s, and RAS Pump Station 2 delivered 193 L/s, giving a total RAS flow of 383 L/s. The RAS channel and screen adjacent to the anaerobic zone managed this flow without issue or exceedance of freeboard limits.

Table 5-1: Victoria Point STP – Summary of Existing Pro	cess Unit Hydraulic Capacity
Unit	Hydraulic Assessment Flow Capacity of unit at mining (unit sepoard (L/s)
Raw Sewage Pump Capacity	525 (Existing Pumps), 550 75 (from August 2020)
Inlet channel to Anaerobic Reactor pipe	AND
Pipe oxidation ditch to Mixed Liquor Distributor	(459) LS
Mixed Liquor Distributor Weir	1400 /s
Mixed Liquor Distributor to Clarifier	Including PAS: 517 L/s (per clarifier) Total required: 489 L/s (per clarifier)
Pipe from Clarifier to Filter Feed Tank	754 L/s
Filter Feed Tank to Filters	Unable to be confirmed.
Filter Hydraulic Capacity (estimation)	442 L/s
Filtered Water holding tank to chlorine contact tank inlet	1012 L/s
Chlorine contact tank outlet weirs	1610 L/s
RAS Pump Capacity	188 L/s (per pump station in original design) From Site Measurements: RAS Pump Station 1 155 L/s (one pump at 100% speed) 193 L/s (two pumps at 100% speed) RAS Pump Station 2: 120 L/s (one pump at 100% speed) 190 L/s (two pumps at 100% speed)
WAS Pump	1-8.3 L/s (depending on stator condition)
Dewatering filtrate return	73 L/s (Derived from SCADA Data for Pump Station)

5.2 SECONDARY TREATMENT PROCESS CAPACITY

5.2.1 Capacity Based on Sludge Production / Clarification

The nominal clarification capacity of the existing secondary treatment process was initially quantified using steady state process modelling and the Vesilind 1-D flux model. The following criteria and conditions were applied to the onalysis:

- 1. Pollutant loads at Maximum Monthly Load (see Sections 3.3 and 3.4) As the maximum monthly influent load will correspond to the maximum sludge inventor within the system, this loading condition has been applied to the analysis. This is in line with typical process design practice.
- Sludge age of 15 days (see Section 3.5)
 To maximise the capacity of the system while maintaining adequate nitrification and denitrification, an operating sludge age of 15 days has been applied. This sludge age was determined baced on analysis of the performance of the existing plant and confirmed with the calibrated dynamic process model has sludge age exceeds the minimum required for application of the "barrier option" under the end of waste code.
- 3. Mixed liquor temperature of 19.5°C (see Section 3.6.1) The maximum sludge inventory corresponds to the minimum mixed liquor temperature. This figure was drawn directly from the plant log, and represents the typical sustained minimum value during the winter months.
- Settleability at 80th percentile of Valid Monitoring Results (see Section 3.5) The 80th percentile of the valid settleability monitoring results measured on-site from 2013-19, 205 mL/g DSVI, has been applied to the capacity assessment.
- 5. De-rating of Clarifier Peak Surface Overflow Rate to account for non-idealities in full scale clarifiers The peak surface overflow rate has been de-rated by \$0% to account for typical impact of non-idealities in the Vesilind Flux theory compared to full-scale stress test results (Ekama G. A., et al., 1997).
- 6. Sludge Storage in Secondary Clarifiers The steady state modelling included provision for the storage of sludge in the clarifiers up to a depth of 0.3m to the side wall. This depth of sludge blanket's somewhat less than measured under recent operations, but is considered a suitably conservative basis for abalysis. Sludge storage in the clarifiers serves to increase the clarification capacity by reducing the mixed table some as the concentration in the clarifier feed. The solids concentration in the clarifier blanket was assumed to the same as the concentration in the mixed liquor.
- Treatment of Flows up to 5 x ADWF (see Section 3.6.7) In line with the design basis applied to the 2003 upgrade, the upgrade planning has been based on transfer and full treatment of all flows up to five times the average dry weather flow (at 220 L/EP/d).
- Peak Capita Flows at 220 L/EP/d (see Sections 3.2 and 3.4). In line with the design basis applied to the 2003 upgrade, the upgrade planning has been based on transfer and full treatment of all the vs up to five times the average dry weather flow (at 220 L/EP/d).

The solids removal capacity of the existing Victoria Point secondary treatment process based on these conditions is summarised in (able 5.2.

Table 5-2: Secondary Treatment Process Capacity based on Solids Clarification

Parameter	Units	AAL	MML
	ML/d ADWF	9.42	8.43
Capacity	L/s PWWF	545	4 88
	EP	42,800	8,300
Maximum Surface Overflow Rate (including derating for non-idealities)	kL/m²/h	1.080	0.969
Minimum RAS Ratio from Vesilind Flux Model	Ratio	0.34	0.61
Minimum RAS Flow Required	L/s	(A)	298
RAS Flow Available in Existing Plant (2 No. RAS Pump at 100% Speed in each RAS Pump Station)	L/s	38	3
	((7/~~	

5.2.2 Ability of Existing Plant to Meet Effluent Total Nitrogen Mass Load

The calibrated dynamic process model has been used to assess the ability of the existing plant to achieve the nitrogen removal requirements at the planning horizon. The results of this analysis are summarised in Table 5-3.

In considering the results (and validating against actual plant performance) it is important to note that the maximum per capita flow is effectively the most stringent assessment criteria for annual simpliance (as it results in the lowest effluent total nitrogen requirements). By contrast, the compliance with the less stringent short-term concentration limit has been assessed at both the minimum and maximum per capita flows.

Loading Condition	Connected Population (EP)	Per Capita Flow (L/EP/d)	Temperature (°C)	mg/L)	NO₃ as N (mg/L)	rDON (mg/L)	Total N(mg/ L)	Required TN (mg/L)
AAL	44,312	220	28.9	0.36	0.40	0.67	1.43	1.38 Note 1
MML	44,312	220 🏈	19	0.46	0.70	0.91	2.07	3 mg/L (Short term
MML	44,312	153	19.5	0.45	0.69	0.91	2.05	median @St.2) _{Note 2}

Table 5-3: Existing Secondary Treatment Process Nitrogen Removal Performance Limits

Note 1: See Figure 3-10 in Section 3.6.3.

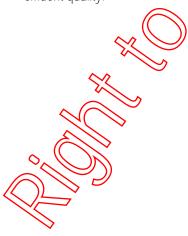
Note 2: See Section 3.6.1 for additional excussion of the exceedance of the mass load limit for periods much less than 12 months.

Key conclusions of this analysis include:

- Under the projected sewage loads imposed by the South West Victoria Point and Weinam Creek developments, the modelling predicts an increase of just 0.09 mg/L in effluent total nitrogen under AAL conditions. However, due to increased flows, the reduction in the effective total nitrogen limit to stay under 13.5 kgN/day pushes the plant into non-compliance. Effectively, the additional load imposed by the South West Victoria and Weinam Creek developments are very likely to result in the plant exceeding its mass load discharge limit for Total Nitrogen.
- The participation of the several fluent several fluent several fluent have only a marginal impact on the predicted effluent quality under the MML trading scenary. The existing plant is capable of meeting the short-term concretion limits for total nitrogen under these critical loading conditions.
- As BON represents a significant portion of the effluent TN limit, any sustained increase in the rDON concentration represents a risk to licence compliance under every operating scenario.

Analysis of the existing plant operations indicates median effluent nitrogen of up to 1.9 mg/L has been observed under recent operations. However it is important to note that operations under dry conditions effectively increases the permissible effluent nitrogen concentration. In wet years the observed effluent nitrogen concentration decreases to 1.5 mg/L or less, but the discharge requirements become more stringent due to the increased flow and mass load licence.

Based on the analysis undertaken in Section 3.6.3, the highest 365-day average mass load discharged by the plant under recent operations was 10.7 kg/d, which occurred in January 2016. Based on this figure and the estimated connected population in 2016, it is anticipated that the "real-world" nitrogen removal capacity of the plant is approximately 38,700 EP, which is broadly consistent with the overall conclusions of the dynamic process model.


5.2.3 Capacity Based on Aeration

The aeration system must provide sufficient dissolved oxygen to oxidise the influent COD and TKN, and maintain the dissolved oxygen concentrations required for proliferation of the organisms which undertake these processes. An analysis of the modelling undertaken for Section 5.2.2 was undertaken to establish the liket capacity of the existing aeration system. To consider the aeration limitations within the dynamic process model, the maximum prover for each aerator was directly specified as a part of the model development.

In assessing the aeration capacity of the secondary treatment process, it is insportant to differentiate between the total installed aerator capacity, and that which can be used while meeting overall histogen removal requirements. At Victoria Point the Dissolved Oxygen concentration near the end of the aerobic concentrative be relatively low to enable adequate denitrification performance – both in terms of denitrification within that portion of the bioreactor itself, and in reducing the oxygen discharged to the anoxic zone portion of the ditch.

Key conclusions of this analysis included:

- At a load of 44,312 EP (and MML), as projected for 2041, the target dissolved oxygen concentration within the oxidation ditch is not maintained throughout the pay with verators No. 1 and 2 operating at the maximum output for most of the daytime period. Under this scenario the total effluent nitrogen increases, but the model predicts it will remain compliant with the Short-Term for dian total nitrogen concentration limit of 3 mg/L on a 24-hour composite basis at MML. This suggests that at this load, the plant is essentially operating at (or marginally above) its aeration capacity, with absolutely no reserve.
- Subsequent model runs demonstrated that nirogen removal performance could be maintained by operating the third aerator at very low output for a sortion of the day. This operating strategy relies on simultaneous nitrification-denitrification throughout the bulk of the ditch to meet the nutrient removal requirements, which is likely to be difficult to robustly replicate under real world operating conditions. Further, operational regimes which rely on operation of all three aerators world not necessarily provide a suitable operating risk given criticality of aeration to effluent quality.

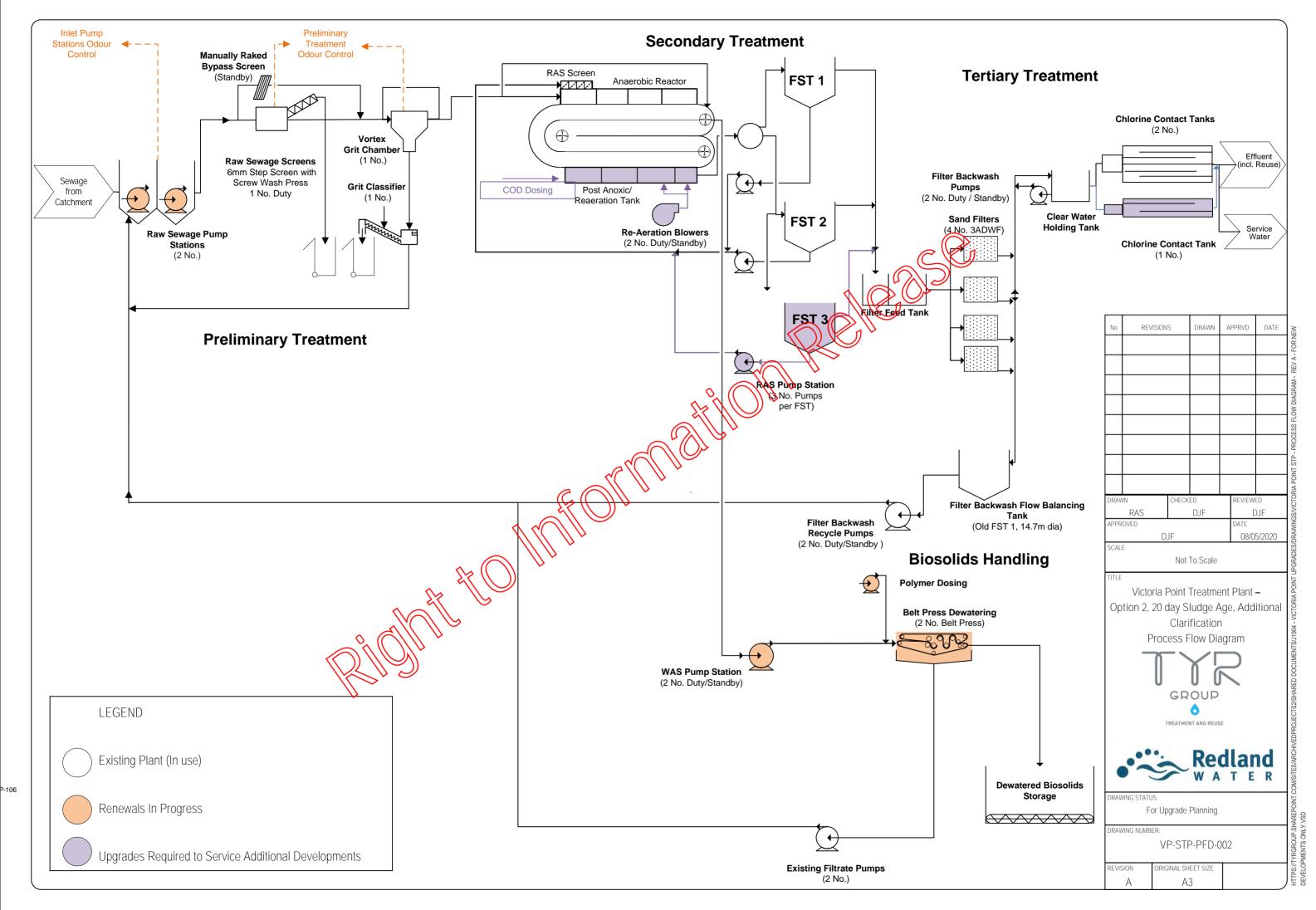
5.3 SUMMARY OF EXISTING PLANT CAPACITY

The overall process capacity of the Victoria Point STP, as compiled from the analyses in Sections 5.1 and 5.2, is summarised in Table 5-4. As noted in the table, the prevailing plant capacity, pending the upcoming upgrade of the raw swage pumps and dewatering system, is limited to 38,300 EP by the ability of the secondary clarifiers to treat 5 x ADW. The ability of the process to maintain compliance with the Total Nitrogen Mass Load Limit will be compromised at a single 10 (38,700 EP).

Table 5-4: Victoria Point STP -	Summary of Capacity by Pro	ocess Unit
Process Unit	Value	
Loading Scenario	Maximum Monthly Load	
Per Capita Flow	220 L/EP/d	Nominal maximu and in Basis of Planning
PWWF / ADWF	5.0 x ADWF	As defined in plan is the plant liquid stream.
Inlet	Works - Overall	41.240 EP, 9.07 ML/d ADWF
Existing Raw Sewage Pumps	41,240 EP	Capacity based on existing combined pump capacity of 525 L/s (Duty/Assist) (see Section 5.1)
New Raw Sewage Pumps	43,200 EP	Capacity cased on new pumps of 550 L/s (Duty/Assist) to be installed in August 2020 (see Section 5.1)
Influent Sewage Screening	43,910 EP	559 4
Grit Removal	69,120 EP 36,520 EP	880 (spased on manufacturer rating 425 Disbased on 1.5 m/minute rise rate (conservative)
Secondar	y Treatment - Overall	38,300 EP, 8.43 ML/d ADWF
Clarification	38,300 EP 🕠	At 5 days sludge age, MML loading conditions
Nitrogen Removal	38,700 EP	based on Total Nitrogen Mass Load Limit of 13.5 kg/d
Aeration	~44,300 EP	Based on nitrogen removal capacity with two aerators operating at 100%.
Hydraulic Capacity	>44,312 4 P	
Effluent Disinfec	tion and Discharge Verall	38,300 EP, 7.48 ML/d ADWF
Tertiary Filters	35,350 EP (53.0) ADWF 37,100 EP at 28 ADWF 44,310 EP at 2.4 x ADWF	270 L/s Capacity. Filtration of all flows not required for licence compliance with the retention of chlorination.
Effluent Disinfection	38,700 EP	Required for Residual Chlorine <0.7mg/L when secondary effluent ammonia must be reduced to maintain compliance with effluent Total Nitrogen Mass Load Limit (see Section 6.3).
Biosolids Handling - Overal		44,300EP, ML/d ADWF
Existing GDD/BFPs	>44,300 EP	Duty/Assist, 5 hours/day, 6 days/week
New Dewatering Machines		Duty/Standby, 11.2 hours/day, 5 days/week (Duty Only)
(procurement in pro	II Diant Canacity	
	III Plant Capacity	38,300 EP, 7.48 ML/d ADWF
Overall Existing Clar Sapacity	38,300 EP	Limited by secondary treatment clarifier capacity, noting that nitrogen removal capacity (and chlorine contact tank capacity by corollary) is only marginally higher.
Note 1: Haticised Ligures are not o	considered to limit overall plant	capacity.

5.4 SUMMARY OF REQUIRED UPGRADE WORKS

The planning investigations and concept design have identified a suite of additional works required to manage the additional loads associated with the South West Victoria Point and Weinam Creek development (44,312 EP). The works required, and the associated staging of works, are summarised in Table 5-5 and Figure 5-2 overleaf.


Table 5-5: Summary of Required Pl	ant Upgrades and Staging		\mathbf{D}
Upgrade	Infrastructure	Revu(eo)	Tom
Increased Nitrogen Removal	Post-Anoxic / Re-Aeration Zone)	38,70 EP	2025
Additional Solids Settling Capacity	1 No. Additional Secondary Clarifier	38,300 50	2024
Additional Disinfection Capacity	1 No. Additional Chlorine Contact Tank	68700 EP	2025
		$\sim \vee $	

Completion of the works to service the developments is required to be completed and here vice by 2024-25. This suggests the works should be undertaken as a single stage and under a single contract, with procurement and design commencing in 2020-21.

Rev C

Page 117 of 184

6 PLANT UPGRADES REQUIRED TO SERVICE NEW DEVELOPMENTS

The process selection and concept design of the upgrades required to treat the increased sewage loads associated with the new developments are summarised in the following sections.

6.1 INCREASED NITROGEN REMOVAL

6.1.1 Options Identification and Short-Listing

The concept design includes augmentation to reduce effluent total nitrogen concentrations to meet the mass load limit at loads in excess of 38,700 EP. Should both the South West Victoria Point and Weinam Creek developments proceed, these works are projected to be required by the end of 2025.

The options to enhance the nitrogen removal process within the existing plant were the subject of an identification and shortlisting process to identify the preferred solutions to be carried forward for more detailed analysis. As detailed in Section 3.6.4, the ammonia, oxidised nitrogen, and refractory nitrogen fractions of the total nitrogen in the plant effluent indicate that there is substantial potential for the nitrogen concentrations to be reduced further using conventional processes. The longlist of options considered is summarised in Table 5-3.

In addition to the treatment options, it is important to note that compliance with the licence could also be achieved through a number of alternative options which accommodate higher effluent total nitrogen concentrations. As discussed in Section 3.6.1 the assimilative capacity of Eprapah Creek is currently being modeled as a background to the future development of the plant. Depending on the results of the modelling, and subsequent regotiations with the DES, potential solutions include:

- Renegotiation of the Stage 2 Nitrogen Mass Load Ling Based on the impacts of nitrogen loads (see Section 3.6.1);
- Increased effluent reuse to reduce the volume of flew discourged to Eprapah Creek;
- Relocation of the effluent discharge point closer is the mouth of Eprapah Creek (where dilution with tidal flow is increased);
- Installing effluent storage to enable effluent sischarge to be limited to the ebb-tide periods (during dry weather).

The viability of these options depends on the recults of the environmental assessments, and if feasible, have the potential to deliver greater value. They remain outside the scope of the upgrade investigations. It is recommended that the development and assessment of these alternative options be pursued if their viability is confirmed through the current environmental investigations.

Table 6-1: Summary of Options Identification and Short-Listing for Enhancing Nitrogen Removal

Table 6-1: Summary of	Options Identification and Short-Listing for Enhancing Nitrogen R	removal
Option	Advantages	Disadvantages
	Treatment Plant Opti	
Dry Weather Flow and Load Attenuation (Influent Balance Tank)	 Proven, well understood technology applied at multiple STPs in SEQ to target very low effluent total nitrogen. Provides opportunity to optimise operations through reducing plant dynamics and shifting power demand from peak to off-peak periods. 	 Plant already achieves very low effluent aermonia Does not provide additional wet weather treatment capacity High Capex due to large vankage (2.5 to 3 ML) and odour control (15,009-24,000 m³/h) required Not likely to be as effective as other solutions within Victoria Point STP's existing configuration.
Post-Anoxic / Re- Aeration Tank	 Proven, well understood technology. Reliably provides supplemental nitrification and denitrification. Existing oxidation ditch has been configured specifically to enable post-anoxic tankage to be readily added. Denitrification performance can be efficiently supplemented with chemical substrate (e.g. sugar), eliminating the risk in influent characteristics Provides a minor increase in solide removal capacity through increasing bioreactor volume Enables structural issues in one section of the existing oxidation wall to be resolved. 	 Additional access road required for maintenance of new equipment in post-anoxic / reaeration zone.
Ozone and BAC	 Well developed, mature technology Robust additional nitrogen removal Small footprint 	 High energy and materials consumption Significant additional process complexity compared to alternatives and existing STP.
Reverse Osmosis	 Well-developed, mature technology Carrobustly achieve the required levels of nitrogen removal Smallfootprint 	 No sink available for the nitrogen removed with the RO system and brine stream High energy consumption
RI	191 ⁿ	

The two options which were considered in detail are discussed further in the following sections.

Post-Anoxic/Re-Aeration Tank

Additional denitrification can be achieved through addition of further bioreactor tankage at the downs and of the existing oxidation ditch to provide:

- 1. A post-anoxic zone, where oxidised nitrogen can be denitrified under anoxic conditions. The substrate to drive this additional denitrification is generated through the death and lysis of organisms within the between augmented by dosing of additional substrate to drive rapid denitrification.
- 2. A re-aeration zone, to oxidise any ammonia released through death/lysis of organisms in the post-anoxic zone, drive additional biological P uptake as required, and deliver the mixed liquor to the clarifiers with stifficent dissolved oxygen.

Based on experience in the design of comparable systems, the optimal post-anoxic correction generally comprises a mass fraction of 6-9%, and the optimum re-aeration zone approximately 2-3% mass fraction.

Influent Sewage Dry Weather Balance Tank

Conventional biological nitrogen removal processes generally have a peak in effluent anymonia associated with diurnal peak flow period. As nitrifying organisms are very slow growing, they are unable to respond to large scale increases in nitrogen load above the average (as occur during the diurnal peak). As a result, normal dry weather flows generally see the effluent ammonia increase for a few hours during and after the peak loading period. Additionally, effluent nitrate generally increases for many hours after the peak in effluent ammonia due to the nitricitation of the excess ammonia in the absence of the substrate required to denitrify it. The balancing of influent sewage hows during dry weather enables the peaks in both effluent ammonia and effluent oxidised nitrogen to be avoided, reducing effluent total nitrogen (on a 24-hour basis).

Dry weather influent sewage flow balancing is used at a number of bewage treatment plants in South East Queensland, including Murrumba Downs, Cooroy, and Pimpama. These facilities demonstrate the capability of load balancing to deliver very low effluent ammonia and nitrate.

A dry weather balancing tank at Victoria Point would need to be approximately 2.5-3 ML in working volume, and would seek to attenuate the sewage flows to the secondary treatment process to between approximately 80% and 120% of the average. In wet weather, the balance tank would generally fill, and flow attenuation would cease. Flow would be pumped from the tank to the inlet works / secondary treatment process by relatively low head pumps. Due to the configuration of the existing raw sewage pump stations at Victoria Point, a balance tank is likely to be most cost effectively delivered as an additional (very large) wet well for these pump stations.

Due to the odours associated with storage of sewage, it is anticipated that a balance tank at Victoria Point STP would need to be fully enclosed and maintained at a negative pressure by an odour control facility. Due to the large volume of air within the balance tank, and its potential rate of filling, the odour control system required to ensure licence compliance would be of substantial scale. Mixing of the balance tank would also be required to ensure that it balances load (rather than just flow).

A Post Anoxic/Re-Aeration Tank has been adopted as preferred solution for Victoria Point as:

The need for and potential benefits of an influent dry weather sewage balance tank are limited by the very low effluent and point already achieved by the plant. A balance tank can also be used to deliver lower effluent nitrate (as required to reduce overall effluent total nitrogen), but not as efficiently or robustly as a Post Anoxic Zone / Re-Arrative zone (with substrate dosing if required).

The capital and operating costs associated with a balance tank will be larger due to the need for:

- \neg An odour control system of substantial capacity;
- Construction of a 2.5-3.0 ML tank (compared to a 0.85-0.90 ML post-anoxic / reaeration tank), including corrosion protection, and,

- o Additional scope in pipework and existing asset modifications.
- The additional wet weather treatment capacity provided by the post-anoxic /reaeration tank (which is not provided by the balance tank option).
- The potential to use the new post-anoxic / re-aeration tank to provide additional cover over the reprocement in the eastern side of the existing oxidation ditch wall.

6.1.2 Post-Anoxic / Re-Aeration Tank Concept Design

The Post Anoxic zone will comprise three cells, complete with sugar dosing to the first zone if reacted Each cell will contain a high-speed compact mixer to maintain the solids in suspension. The Re-Aeration cell will be accaded downstream of the oxidation ditch and will be serviced by two blowers, diffused aeration and one DO meter. Additionally, the third post-anoxic cell will be fitted with aeration to enable it to operate under anoxic or aerobic conditions as process requirements vary.

The outlet pipework from the existing oxidation ditch outlet has been specifically confidured to enable the future addition of a post-anoxic/re-aeration tank on the eastern side of the existing structure. This tank may be cast against the existing reactor to provide some additional cover to the reinforcement of the oxidation ditch, which is showing surface cracking.

Key considerations in the design of the of the Post-Anoxic / Re-Aeration Takincluded:

- A post-anoxic zone that is large enough (and compartmentalised to deliver efficient substrate utilisation in denitrification, but not so large that all nitrate is exhausted well prior to the end of the zone (which can compromise biological phosphorus removal performance).
- Sufficient aeration capacity to fully oxidise any residual substrate and ammonia in the re-aeration zone.
- The provision to aerate the third Post-Anoxic cell under reduced loading conditions to prevent anaerobic conditions (and associated loss of biological phosphorus represed performance).
- Provision of an overall increase in bioreactor former to deliver increase in wet weather treatment capacity.

Both the dynamic and steady-state process models have been used to support the development of the design for the Post-Anoxic / Re-Aeration Tank. The revised configuration of the model is shown in Figure 6-1.

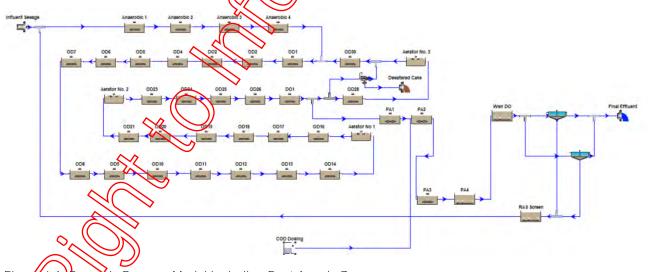


Figure 1) bynamic Process Model including Post Anoxic Zone

The nitrogen removal performance and aeration requirements of the post anoxic zone are summarised in Table 6-2.

The model runs did not include the dosing of additional substrate, and indicated that no additional substrate will be required to achieve compliance with the effluent total nitrogen mass load limits. As a result, no facilities for substrate storage and dosing have been included in the concept design. Should substrate dosing be required in practice to manage operations, changed loading conditions, or drive to lower effluent total nitrogen, the existing Molasses Storage and Dosing Facility could be reconfigured for this purpose.

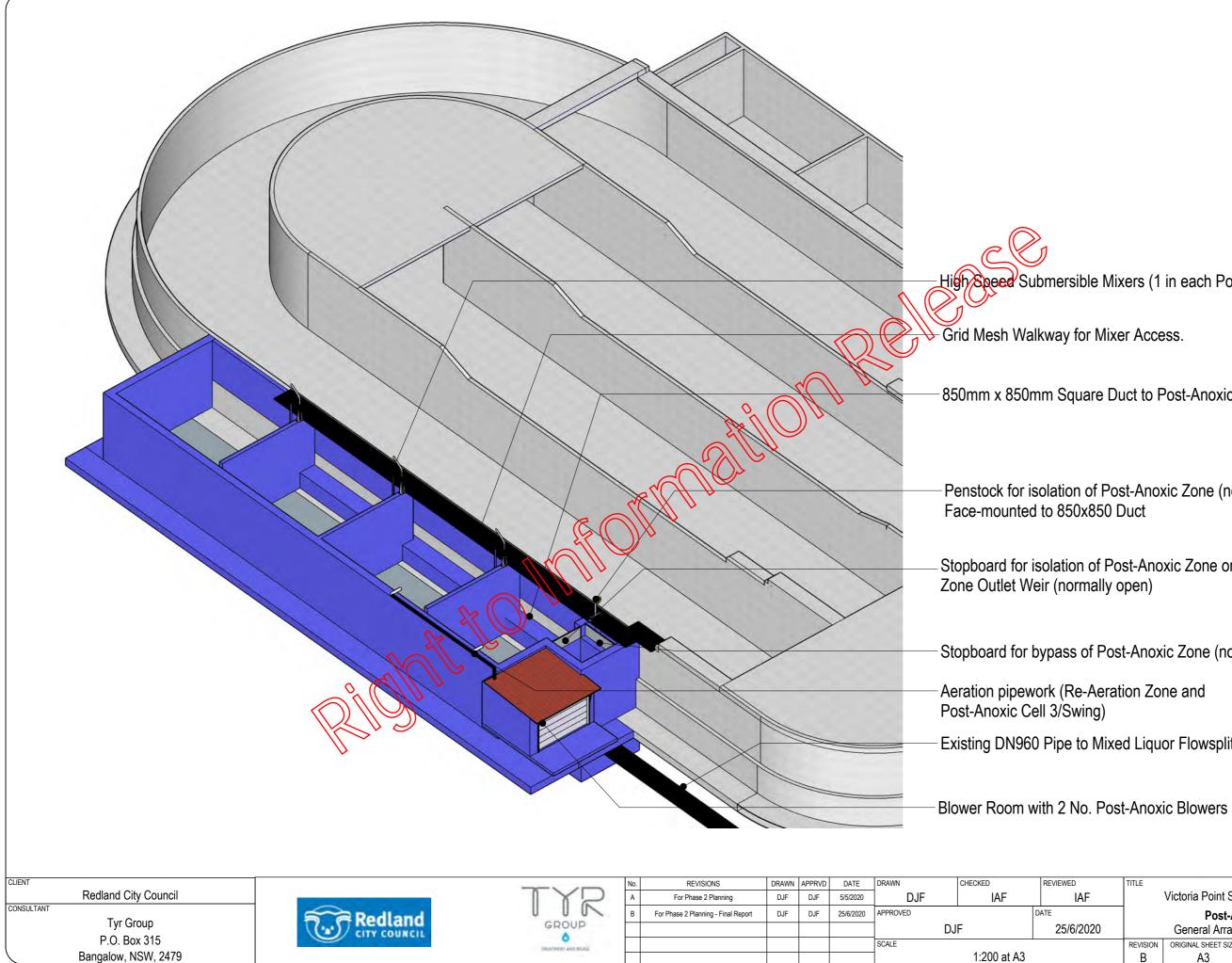
Table 6-2: Victoria Point STP – Post-Anoxic Zone Design - Dynamic Modelling Results

Loading Condition	EP	Temp (°C)	Effluent NH3-N ¹ (mg/L)	Effluent NO3-N1 (mg/L)	Effluent TN ¹ (mg/L)	Mass Load (kg/d)	Ditch Setpoint (mg/L)	Re- Aerati Set	Pak OTR kgO ₂ /hr)	Peak SOTR (kgO ₂ /hr)
AAL	44,312	23.9	0.08	0.28	1.03	10.1	0.6		10.6	32.2
MML	44,312	19.5	0.41	0.39	1.71	16.7	1.2	$\overline{\mathcal{A}}$	10.7	32.3
MML	44,312	28.0	0.05	0.30	1.26	12.3	2.4	.2	12.0	32.5

Note 1: Based on 220 L/EP/d, 0.67 mg/L rDON at AAL, 0.91 mg/L rDON at MM

The concept design of the Post-Anoxic / Re-Aeration Tank is outlined in Table 6-3 and shown in Figure 6-2 through Figure 6-5.

Table 6-3: Schedule of Capital Works - Augment Reactor with Post-Anoxid/Re-Aeration Tank


	Works required
Civil Structure	 Mixed liquor transfer chamber and re-assation zone outlet chamber 3 No. Post Anoxic Cells 2.6% mass fraction 1250 kL) each cell Internal dimensions 8.46m length x 7.20m width x ~4.1m water depth Serpentine flow between cells 1 No. Re-Aeration cell 2% trass traction (187 kL) Internal dimensions 6.37m length x 7.20m width x ~4.1m water depth Western wall on new tank formed against existing oxidation ditch wall 500mm external wall thickness, 500mm floor thickness with 1.5m toe. 250mm baffe wall thickness
Mechanical	 Aeration Titled to Post-Anoxic Cell 3 and Re-Aeration Zone Fixed-to-floor fine pore membrane diffuser systems Positive displacement blowers (2 No., Duty Standby, 500 Nm³/h per blower), fitted in dedicated room at corner of outlet chamber for noise control. Roller-door access for maintenance. DN150mm spiral wound stainless steel aeration pipework 1 No. actuated butterfly valve for control of air flow to Post-Anoxic Cell 3. No. high speed compact mixer in each post anoxic zone cell (3.7 kW each)
Instrumentation	• 1 No. DO meter (Re-aeration zone)
Pipework modific	 Modify mixed liquor pipework (chamber attached to ditch or pipework) 1 No. Penstock / 2 No. Stopboards to bypass new tank as required for maintenance Submerged duct in tank for mixed liquor transfer to Cell 1
Ancie	 New walkway on tank wall for access Relocation of scum harvester to north of existing location required. New access road to blower room and apron included in scope.
\sim	

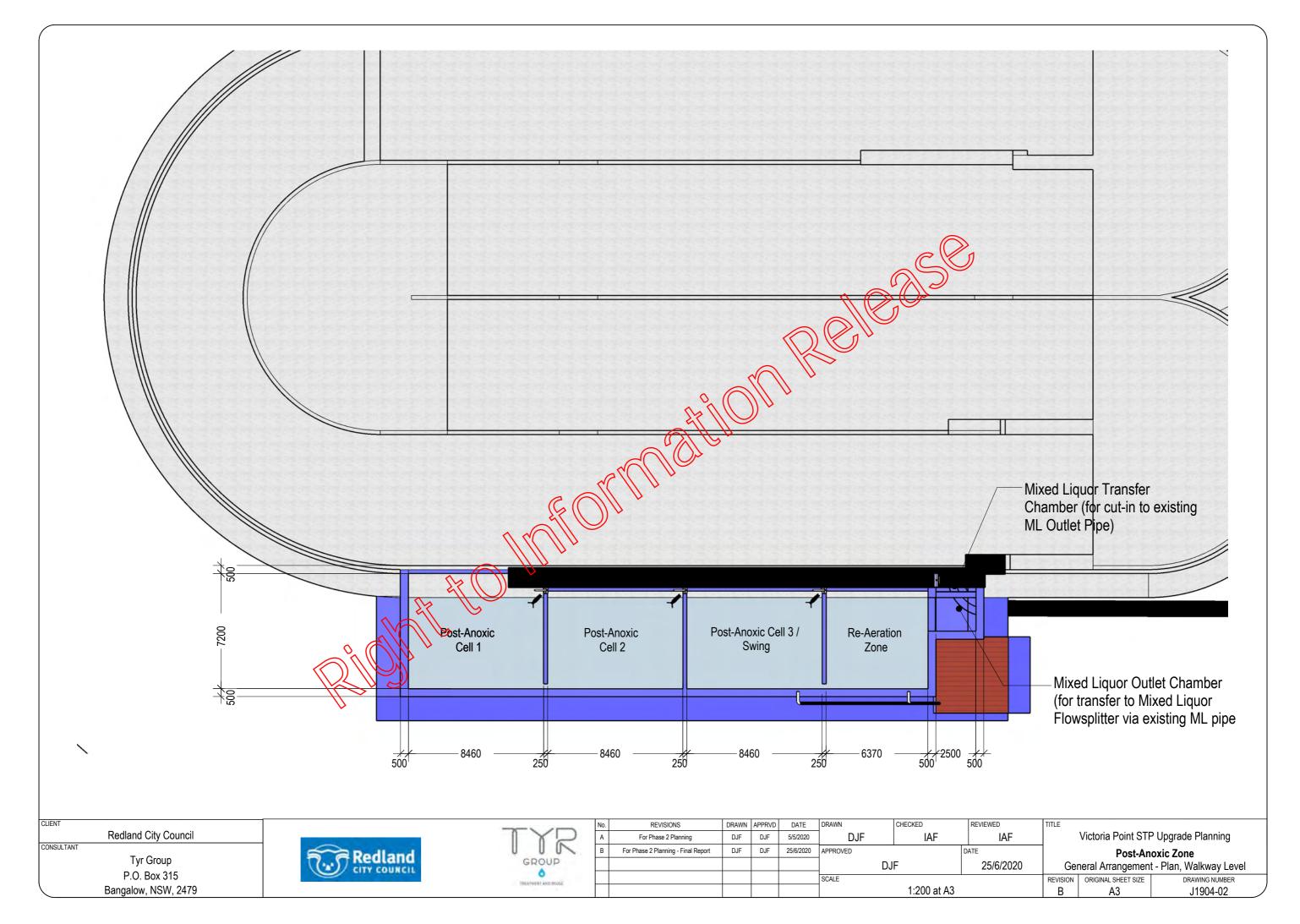
Key attributes of the design include:

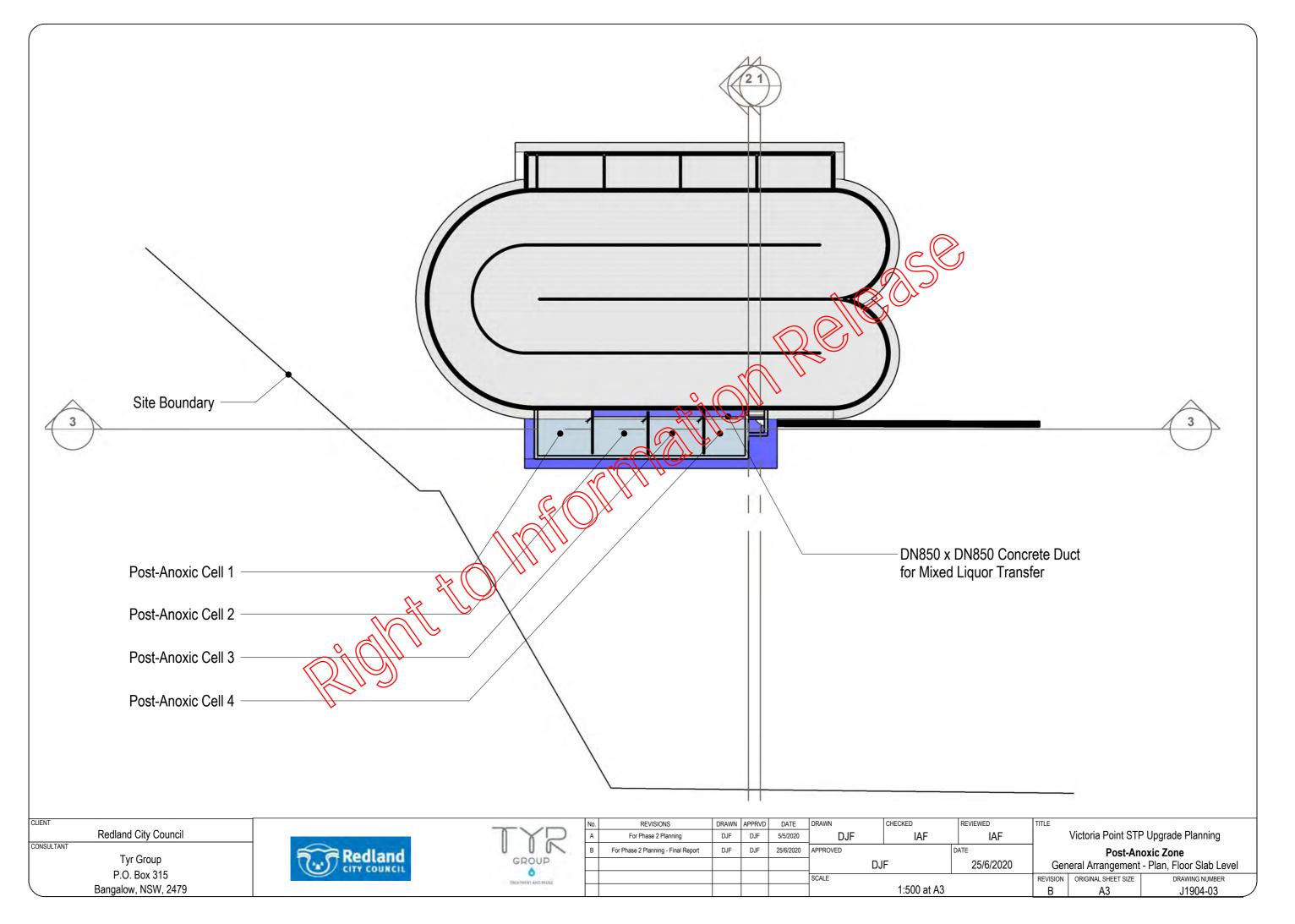
- Construction of a new Mixed Liquor Transfer Chamber and Re-Aeration Zone Outlet Chamber directly over the existing DN960 mixed liquor pipe to the between the oxidation ditch and mixed liquor flowsplitter. The chambers extend to below the floor slab level of the existing bioreactor and enable the pipe to be encapsulated into walls of the new chambers around the existing 90-degree bend. Following completion of construction and wet commissioning of the Post-anoxic / Re-aeration tank, process commissioning of the system around the existing tank, process commissioning of the system around the existing tank.
 - 1. Isolation of influent sewage and RAS flow from the oxidation ditch;
 - 2. Raising of the existing outlet weir of the oxidation ditch;
 - 3. Emptying the existing DN960 mixed liquor pipe (through closing the pensitocks and temporary pumping from the mixed liquor distribution chamber);
 - 4. Cutting the existing bend at the inlet and outlet of the new transfer thamber
 - 5. Returning penstocks and weirs to their normal positions, and re-establishing normal flows to the oxidation ditch.
- A submerged square duct (constructed in concrete) is used to transfer mixed liquor from the transfer chamber to Post Anoxic Cell 1 (through the Re-Aeration Zone, and Post-Anoxic Cells 3 and 2). On discharge to the anoxic zone,
- The inlet to the duct is fitted with a normally-open pension within the transfer chamber. Isolation and drainage of the Post-Anoxic / Re-aeration tank can be facilitated by closing this penstock, and opening a normally closed stopboard at the top of the transfer chamber to direct mixed liquor from the oxidation ditch direction to the outlet chamber of the new tankage. The design also includes a stopboard on the outlet weir of the Re-Aeration Zone to prevent backflow to the Re-Aeration Zone under this maintenance condition.

Rev C

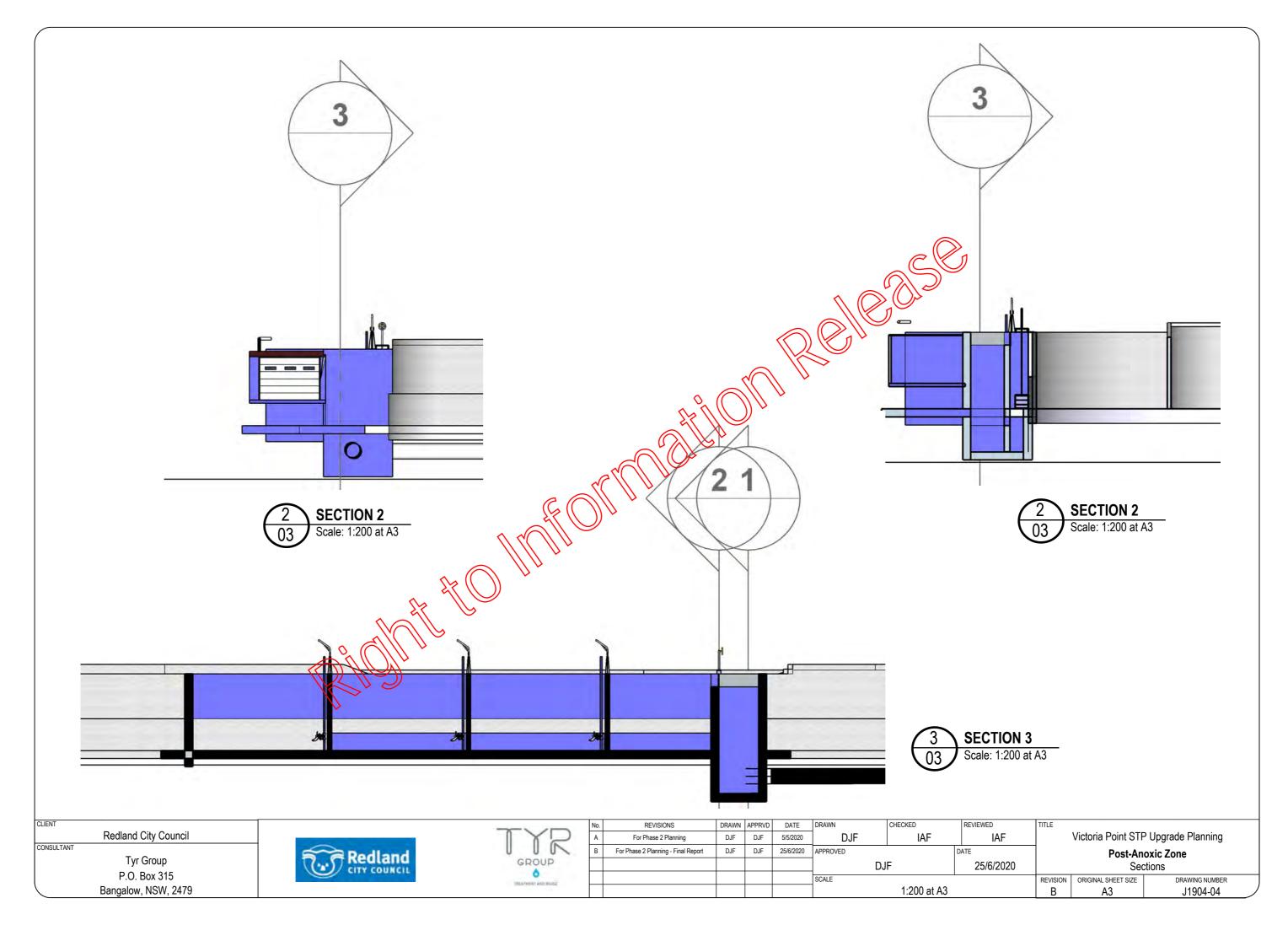
Submersible Mixers (1 in each Post-Anoxic Cell)

850mm x 850mm Square Duct to Post-Anoxic Cell 1


Penstock for isolation of Post-Anoxic Zone (normally open) -


Stopboard for isolation of Post-Anoxic Zone on Re-aeration

Stopboard for bypass of Post-Anoxic Zone (normally closed)


Existing DN960 Pipe to Mixed Liquor Flowsplitter

ED	TITLE							
IAF	Victoria Point STP Upgrade Planning							
	Post-Anoxic Zone							
/6/2020	General Arrangement - Isometric							
	REVISION	ORIGINAL SHEET SIZE	DRAWING NUMBER					
	В	A3	J1904-01					

Page 127 of 184

Page 128 of 184

6.2 ADDITIONAL SOLIDS SETTLING CAPACITY

6.2.1 Description and Requirements

The concept design includes provision of an additional secondary clarifier to provide additional wet weather treatment capacity. Should both the South West Victoria Point and Weinam Creek development proceed, these wetk are projected to be required by the start of 2024.

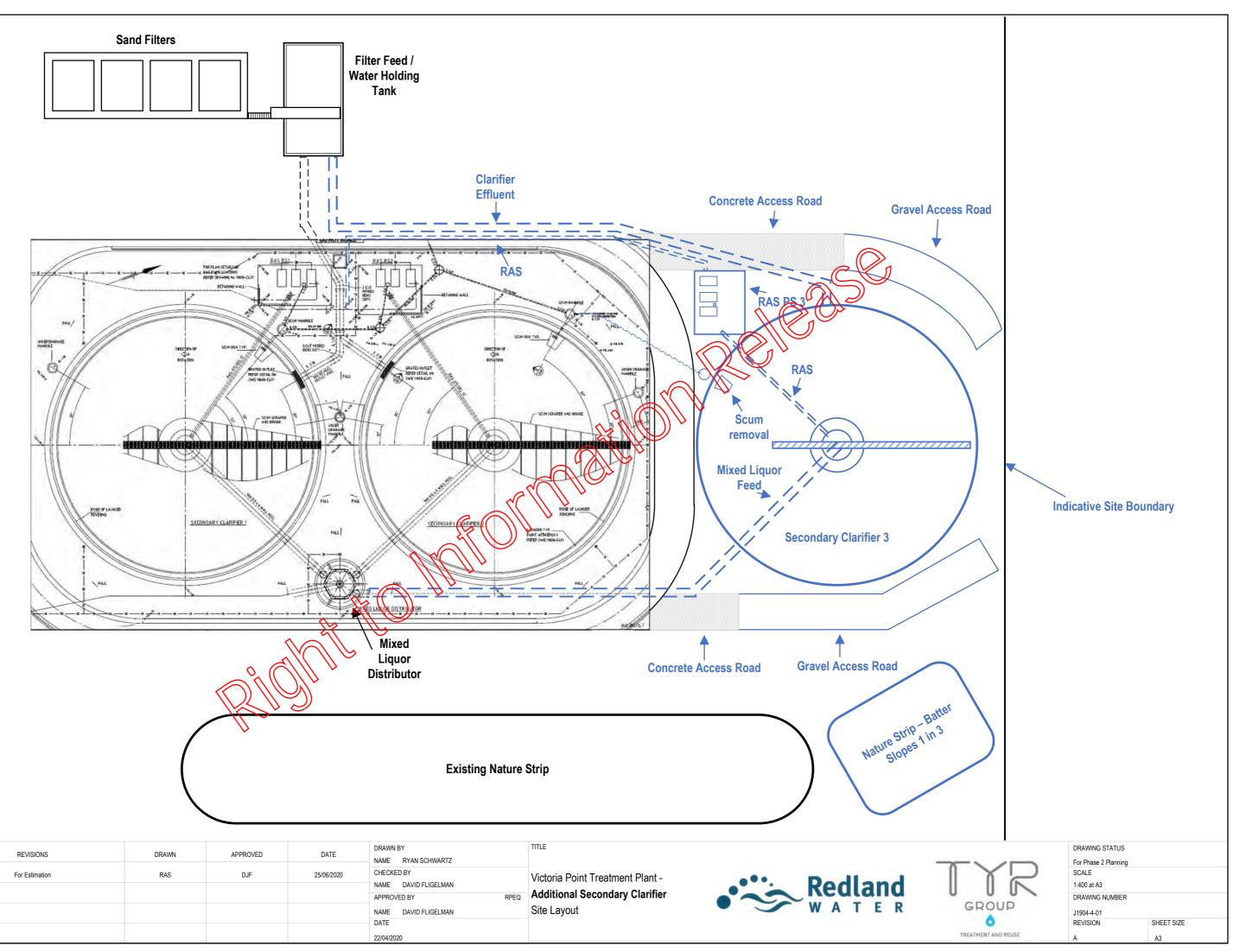
Under the reduced operating sludge age made possible by the final End-of Waste Code (see Section 30) a single additional clarifier will be sufficient to manage flows and loads to beyond the 2041 planning horizon.

6.2.2 Additional Clarifier Concept Design

The additional secondary clarifier diameter has been set at a nominal 34.5m to match the exiting final clarifiers, and provide ease of operation. At this sizing, the secondary treatment process capacity based on solid settling will be increased to 49,100 EP.

The concept design has located the clarifier immediately to the north of the existing units (in line with the master plan provided within the 2001 upgrade). This location leaves insufficient space for an access road to pass around the northern end of the new unit, or for the provision of additional berms to provide visual screening and noise abatement to the adjacent parkland. It is recommended that adjustment of the site boundary be considered to accommodate both of these elements during design development.

Based on the GIS overlays, it is not anticipated that the additional starifter will require removal of any koala trees in the proposed location. The clarified effluent and RAS pipework alignment has been specifically defined to avoid removal of any of the koala significant trees located to the north-east of the existing parifiers.


The clarifier will be provided with a log-spiral scraper, retaining bridge, and scum beaches. In keeping with the installed infrastructure, the new clarifier will be serviced by a dedicates RAS pump station comprising three pumps configured as duty/duty/standby. The clarifier will have a 1 in 12 foor stope, and a side water depth of 4.0m. The concept design has adopted a marginally deeper clarifier design due to the benefits it provides to both wet and dry weather solids capture.

Modifications to the mixed liquor flowsplitter are required to install each new clarifier, including modification of the internal division in the flowsplitter's annular section and the addition of a new isolation penstock. New RAS pumps and pipework, scum pipework (to the existing scum system), and civil works for the RAS pump station, have also been included within the assessment.

Table 6-4 outlines the schedule of works required for additional secondary clarifier.

Table 6-4: Schedule of Capital Works - Additional Clarifier

Item	Works required
Modifications to Mixed Suor Flowsplitter	 New DN960 Mixed Liquor pipe from Mixed Liquor Distributor Modify internal division in Mixed Liquor Distributor outer annulus 2 No new penstocks
Additional File Classer	 Nominal 34.5m diameter, 4m side wall depth clarifier Clarifier mechanism (including bridge, scraper, flocculation skirt, energy dissipating inlet, centre column, weirs, scum beaches, scum pump)
RAS up <u>Stati</u> on	 New RAS pipework, fittings, and civil works for additional RAS pump station 3 no 11 kW RAS pumps sized for 190 L/s with two pumps at 100%
\triangleright	

No. A	REVISIONS For Estimation	DRAWN RAS	APPROVED DJF	DATE 25/06/2020	DRAWN BY NAME RYAN SCHWARTZ CHECKED BY NAME DAVID FLIGELMAN APPROVED BY RPEQ NAME DAVID FLIGELMAN DATE 22/04/2020	m⊥E Victoria Point Treatment Plant - Additional Secondary Clarifier Site Layout	• Redland WATER
----------	-----------------------------	--------------	-----------------	--------------------	---	--	--------------------

Page 130 of 184

6.3 DISINFECTION

6.3.1 Options Identification and Short-Listing

Under the criterion applied to sizing of chlorine contact tanks in the original plant design (60- minutes HILT (ADWF), the existing two chlorine contact tanks have sufficient volume for up to 9.60 ML/d ADWF or 43,640 EP. Such a separative would be sufficient for the 2041 planning horizon (44,312 EP) while two tanks are in service. However, while the required faecal coliform kill will be readily achievable in the existing disinfection system through to the planning horizon, there are a number of factors which are likely to make compliance with the maximum free chlorine residual limit of 0.7 mg/L much more challenging as loads increase. The key factors include:

1. Reduced secondary effluent ammonia concentrations – Lower secondary effluent ammonia levels will be required to maintain compliance with the nitrogen mass load limit as the connected population exceeds increases. As noted in Section 6.1.2, the addition of a post-anoxic / re-aeration zone to meet the phrogen removal requirements will reduce secondary effluent ammonia levels to near zero for much of the day. Lower secondary effluent ammonia will reduce the formation of chloramines (which support disinfection, but do not contribute to tree chlorine residual).

It should be noted that the historical performance of the plant has seen robust disinfection performance. Measured Free Chlorine levels, as recorded on daily grab samples, are comfortably below 0.7 mg/L (2015-2019 annual average 0.12-0.24 mg/L, annual maximum 0.67-0.69 mg/L). This excellent performance at low free chlorine residuals is considered likely to be partially due to chloramine disinfection addition to free chlorine, but will be less feasible due to the lower effluent ammonia required as flows increase.

- Reduced Chlorine Contact Time The increase in flows will reduce chlorine contact time in the existing tanks (from 81 minutes at the current maximum ADWF to 59 minutes at the projected 2041 ADWF with the new developments). Modelling of the disinfection process indicates that (his shange will increase the free chlorine residual required to achieve the specified effluent Faecal Coliforms by (15 mg/L at ADWF, and 0.26 mg/L at peak dry weather flow, and 0.69 mg/L at PWWF.
- 3. Chlorine Contact Tank Off-lining for Maintenance In the existing plant, the chlorine contact time is effectively halved during the routine cleaning of chlorine contact tanks. At current flows, process modelling indicates that the required free chlorine residual is approximately 0.7 mg/L at ADWF with one tank out of service (in the absence of chloramination). However, the estimated required free chlorine residual with one tank out of service increases to over 1 mg/L at the higher flows associated with the new developments. At flows in excess of ADWF, the predicted residual required is expected to be higher.

Based on the above, it is anticipated that compliance with the maximum free chlorine residual limit of 0.7 mg/L is likely to become substantially more challenging as flows increase. However, given the excellent current performance in terms of both disinfection and chloring residual achieved in plant operations to date, there appears to substantial scope to maintain compliance until the effluent atmonia needs to be reduced (to comply with the effluent total nitrogen mass load). At this point, the existing system is expected to become inoperable as the chlorine dose required for disinfection will consistently exceed the maximum free chlorine. As a result, the nominal capacity of the existing disinfection system is effectively pegged to the existing plant's nitrogen fremoval capacity at 38,700 EP.

IMPORTANT: there is potential for changes to the prevailing operating practices, as may be required for other aspects of plant operation, to threaten compliance with the maximum free chlorine limit at loads less than 38,700 EP. For example, off-tining of CTs for maintenance outside of low flow periods, increased aeration to reduce effluent total nitrogen, or changes to the practices in chlorine dosing control could all result in exceedance of the maximum free chlorine limit. To this end, it is recommended that the chlorine disinfection performance be routinely reviewed as flows increase to ensure robust and consistent compliance observed in operations to date is being maintained.

Once the capacity of the existing chlorine contact tanks is exceeded, there are two key options for augmentation:

Option 1: Installation of additional chlorine contact tank volume to reduce the free chlorine residual required to achieve disinfection, or,

Option 2: Dechlorination at the end of the chlorine contact tank through dosing of sodium bi-sulphite (SBS optionalism) dosing of sodium bi-sulphite (SMBS).

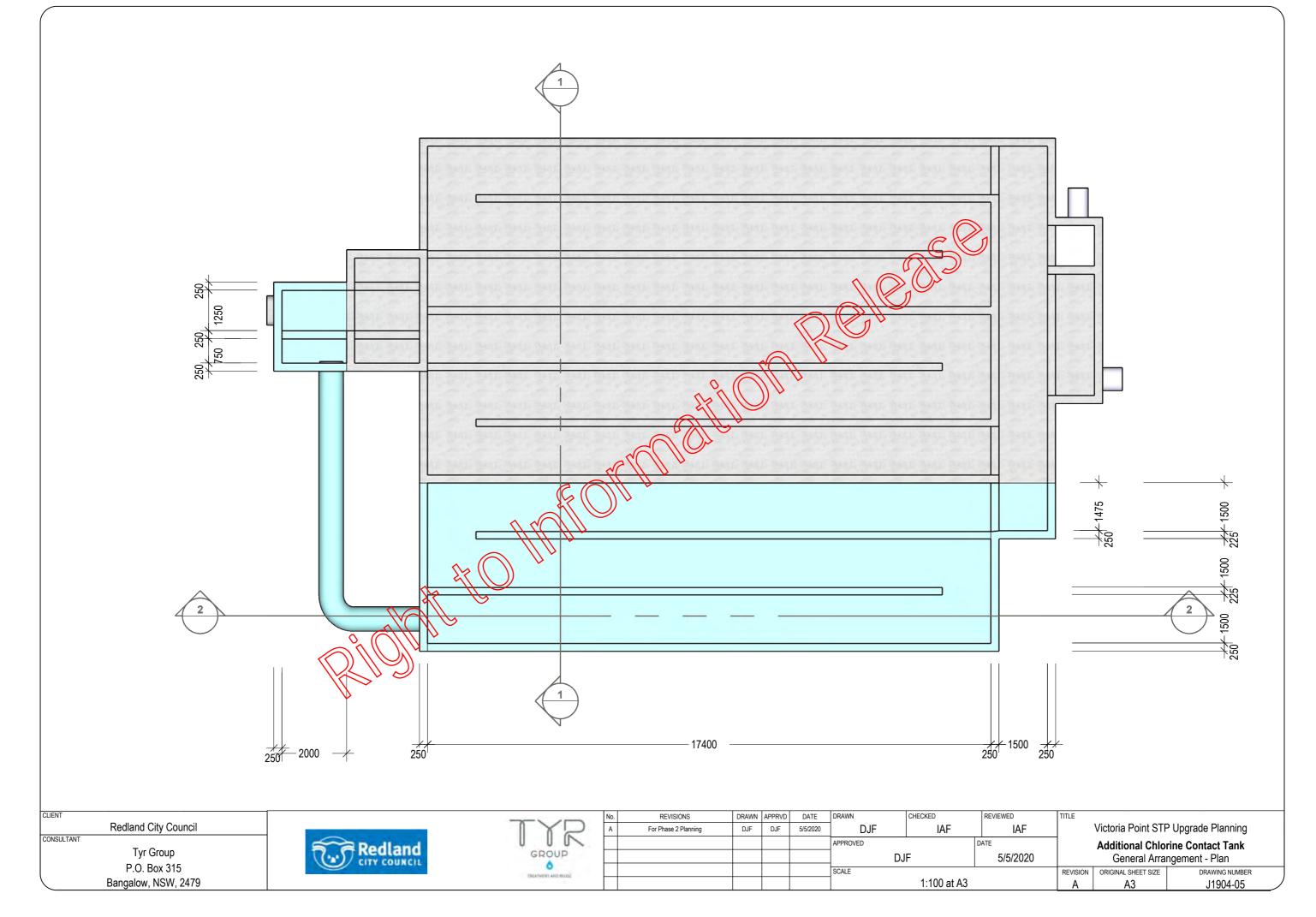
Redland City Council operates a dechlorination facility at Cleveland STP, and has encountered sopificant difficulties in operation of the system. Issues have included:

- The on-line chlorine residual meters require high levels of ongoing maintenance is remain accurate. As the dosing of SBS is controlled under feedback from these instruments, the system is unaste to operate reliably without accurate readings. RCC outsourced the maintenance of these instruments under contract due to the excessive demand they imposed on Operator resources. However, even with this maintenance outsourced, the accuracy of dosing control remains a significant issue.
- Variations in the ammonia concentration in the Cleveland STP effluent have a very strong bearing on the SBS dose required, and has resulted in very high SBS consumption over port periods. Maintaining a suitable supply of SBS on site has been at issue as a result.

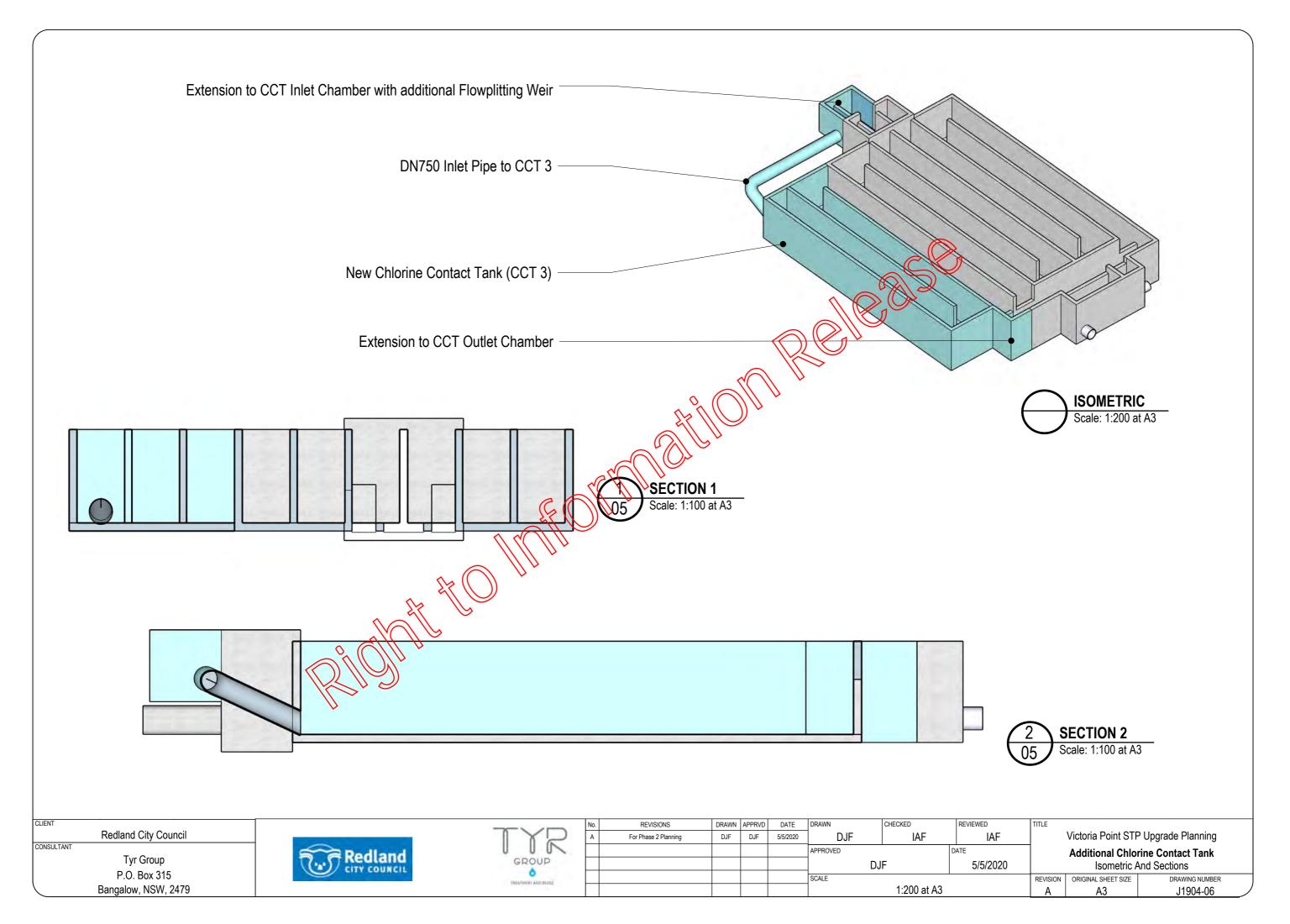
While not a specific issue noted at Cleveland STP, overdosing of SBS consumes dissolved oxygen in the effluent stream, and has the potential to push the DO concentration below the nonimum of mg/L in the Environmental Approval. DO monitoring in the SBS mixing chamber at Cleveland indicates that this is not an issue at this site.

Based on the difficulties encountered in dechlorination at Cleverand, the provision of additional disinfection capacity has been based on Option 1.

6.3.2 Additional Chlorine Contact Tank Concept


The additional chlorine contact tank will be identical indesign to the two existing tanks, and located immediately to the north of the existing units. This additional chlorine contact tank will be required from 2025 under the projected loads associated with the new developments.

The concept design of the additional chloring contact tank is summarised in Table 6-5, and shown in Figure 6-7 and Figure 6-8.


Table 6-5: Schedule of Capital V	lov	KS-	- /	ditional Chlorine Contact Tank
----------------------------------	-----	-----	-----	--------------------------------

Item	Works equired
Additional Chlorine Contact	 No. new 3-pass Chlorine Contact Tank Nominal volume 200 kL Internal dimensions 17.4 length x 1.5m width per pass x 2.61m
Tank	water depth to TWL Serpentine flow between passes
	 Extension to existing inlet chamber, including new 1.5m weir to initial leg in 7.5m x 1.5m x 2.61m water depth concrete chamber. Extension to outlet chamber, 1.5m long extension to existing outlet chamber.
Chlorina	 Extension to outlet chamber, 1.5m long extension to existing outlet chamber. Modification to chlorinator discharges to inlet pipe to inlet chamber.

No substantial modification to the chlorine storage and dosing system is expected to be required to accommodate the loads associated with the two developments.

Page 133 of 184

7 ESTIMATED COSTS

7.1 CAPITAL COSTS

The capital costs for the upgrades have been estimated assuming delivery of the required upgrade work and r a single contract.

Key assumptions applied to the capital cost estimates include:

- Cost estimates have not considered geotechnical information. No piling or deconvertination of land has been allocated within the cost estimate. Should acid sulphate soils, contaminated land or geotechnical issues arise, costs would increase. This level of detail would be expected to be assessed to no subsequent design phases through geotechnical analysis of the proposed site.
- No structural design has been undertaken. As a result, the extent of converte works has been drawn from the existing structures on site, and typical slab and wall thickness applied in the detailed design of comparable water retaining structures.
- The costs for supply of major equipment items (and installation where appropriate) are based on budget quotations from equipment suppliers based on the concept design. This includes raw sewage screening and screenings handling equipment, blowers, and clarifier mechanical equipment.
- The costs for procurement of minor mechanical equipmer titems (blowers, pumps, mixers, valves, penstocks, and stopboards) have been based on actual supply costs in relevant previous sewage treatment plant upgrade projects. Similarly, the cost rates for earthworks, yard pipework, respecte cutting and other general civil construction have been drawn from advice from construction engineers or comparable sewage treatment plant projects.
- Costs have been escalated using the Non-residential construction cost index or CPI as applicable.
- The cost rates for concrete works are derived from construction of similar scaled water retaining structures in water and sewage treatment plants over the last 2 months. The rates are drawn from Tier 2 contractors.
- Delivery of the upgrades under a design-and construct delivery model has been assumed. Other delivery modes may be selected at the discretion of RSC and carry different overheads for the Contractor and Redland City Council, and different margins.
- A 30% contingency was applied to capital cost estimates, which is considered appropriate for the level of design completed and the bottom-up estimating methodology applied.
- Foreign exchange risk was applied to key elements sources from overseas. Contractor margins are shown in Table 7-1.

Overall, within the assumption is been above, the cost estimates have pursued an accuracy of +/- 30%.

Table 7-1 Indirect Costs, Overhead and Margin included in the Capital Cost Estimate

Item	Value
Indirect costs (in the bid costs, mobilisation, bonds, insurance, legal, administration, the nent weather, site establishment, office staff costs)	25% of DJC
Design and Eggin and	11-14% of DJC
Foreign Examples	10% of Imported Equipment
Desi IG with	3% of DJC
Contractives and Margin	11% of Net Capital Cost
Client Cost	5% of Total Contract Cost
Contingency	30% of Total Project Cost

Table 7-2 outlines the costs associated with the plant upgrades as described in Section 6.

Table 7-2 Estimated	d Capital Costs fo	⁻ Upgrades	through to 2041	Planning Horizon (\$AUD, 2020)
---------------------	--------------------	-----------------------	-----------------	--------------------------------

Item	Inclusions	Direct J	ob Cost
Preliminaries	Site Establishment Site Survey Service Location Geotechnical Investigations Environmental Controls	\$0,000 15,400 \$3,00 12,000 10,000	\$72,600
	 Civil works comprising: Excavation (with fill to new berm) Slab (including toe) and walls of Post-Anoxic / Reagation Tank, Transfer and Outflow chambers Mixed liquor pipe modification (block-outs cuts) Concrete duct from transfer chamber to Post-Anoxic Cell 1 Slab and apron for access to blower room Concrete cut to existing toe of oxidation d(tch) Blower building, including louvres and door Walkway and access stairs to accest post anoxic /re-aeration cells and mixers (grid mesh) Access road (sealed, with keft and gutter) to blower building. 	\$837,800	
Post-Anoxic / Re-Aeration Tank	 Supply and install 3 No. post-anoxic cell mixers for (3.7 kW each) Supply and install new diffused aeration system, comprising: Fixed-to-floor fine pore membrane diffusers in Post-Anoxic Cell 3 and Re-Aeration Zone 2 No. Aeration Blowers (Atlas-Copco ZL2 VSD) DN150 Spiral wound stateless aeration pipework DO meter for Re-Acration Zone Actuated butterfly valve for Post-Anoxic Cell 3 aeration control 	\$37,900 \$191,000	\$1,290,000
	 Miscellaneous additional mechanical comprising: Extension to existing service water network Relocation of scum harvester Stopboards (2 No.) and penstock (1 No.) for isolation and bypassing of Post-Anoxic / Re-Aeration Tank 	\$55,200	
	Electricat and Control at 13% of DJC for Post-Anoxic Zone	\$167,600	

Table 7-2 Estimated Capital Costs for Upgrades through to 2041 Planning Horizon (\$AUD, 2020) (continued)

Item	Inclusions	Direct J	
Additional Secondary Clarifier	 Civil works comprising: Clear and Grub of area Excavation of clarifier (with fill to new berms) Completion of new berms for visual/noise screening, including landscaping Modification / removal of wall in ML distributor annular section New Mixed liquor pipework (ML distributor to Clarifier) New RAS pipework (clarifier to pump station, pump station main) Secondary effluent pipework (clarifier to filter feed tank) Concrete works to clarifier (floor, walls, toe, path, lauder) Epoxy coating of clarifier launder Groundwater drainage pipework and manhole Connection of scum beach to existing scum system New RAS pump station base slab Sealed roadway (including kerb and channel) to RAS pump station and clarifier Gravel roadway to clarifier circumference Repairs to existing roads at pipe crossings 	\$1,106,700	\$2,250,000
	 Supply and install clarifier mechanism comprising: Log-spiral scraper (1 1/3 ration) Peripheral scum baffle and wers Scum skimmer 1 No. scum beach Centre column, epergy dissipating inlet, flocculation skirt Slipring Access bridge and warkway 	\$715,000	
	 RAS Pump Station comprising: Pipework and valves within RAS pump station 3 No. (RAS pumps (11 kW) RAS howmeter and associated isolation valves 	\$178,500	
	Miscellaneous additional mechanical comprising: • New aluminium slidegate to ML Distribution Chamber for clarifier isolation • Example of the service water network and hose point	\$29,200	
	Electroal and Control at 10% of DJC for Secondary Clarifier /RAS PS	\$225,500	
S.			

	Japital Costs for Opyrades through to 2041 Planning Horizon (\$AUD, 20	<i>,</i> , ,	,
Item	Inclusions	Direct Jo	ob Cost
Additional Chlorine Contact Tank	 Civil works comprising: Excavation of new CCT Concrete works to: New CCT inlet distribution chamber New chlorine contact tank (~200 kL) New drainage sump Extension to CCT outlet chamber to receive flow form new CCT New pipework to drainage Miscellaneous mechanical works comprising: Inlet isolation penstock to new CCT 	\$35,200	\$296,000
Testing, Commissioning and Handover	 Weirs and isolation stopboard New inlet pipework cut-in 3% of DJC 	\$121	,000
	TO AL DIRECT JOB COST	\$4,034	1 000
Indirect Costs	25% of DJC	\$1,008	
Other Costs	Design (11%), Foreign Exchange Risk (19% of pump, mixers, instruments and blowers cost), design growth (3%)	\$576	
Contractor Fees and Margin	11% of DJC + Indirect and Other Costs	\$618	,000
	Total Contract Cost	\$6,230	6,000
Client Costs	5% of Total Contract Cost	\$311	
	Total Project Cost	\$6,548	
	NTINGENCY AT 30% OF TOTAL PROJECT COST	\$1,964	
TOTAL PROJE	CT COST INCLUDING (CON) NGENCY (+/- 30% Accuracy Target)	\$8.5	12m

Table 7-2 Estimated Capital Costs for Upgrades through to 2041 Planning Horizon (\$AUD, 2020) (continued)

Rev C

7.2 OPERATIONAL COSTS

Treatment of the sewage loads associated with the new developments will have a material impact on the operating costs of the plant. The additional operating costs specifically required for treatment of the load associated with the new developments have been estimated based on the following input assumptions:

• Power and haulage cost rates have been based on rates provided by Redlands City Courter. These are shown in Table 7-3.

Table 7-3: Adopted Values – Operational Cost Estimates

Parameter	Value	Source
Electricity cost	\$0.11 /kWh \$156 p.a. for each additional kW of peak demang	Red ands City Council, 2020
Polyelectrolyte	\$4.95/kg	Redlands City Council, 2019
Biosolids haulage cost	\$65 /Wet Tonne (lower bound) \$100 /Wet Tonne (upper bound)	Redlands City Council, 2020
Chlorine	\$2.94/kg	Redlands City Council, 2019

- Substrate dosing has not been included within the cost analysis at the modelling suggests that it will not be routinely required.
- Excess biological phosphorus removal performance is not expected to be significantly impacted by the increased loads associated with the new developments (or the upgrades). Further, given the limited requirement for phosphorus removal (TP 4 as long term median), alum losing is expected to be negligible for both options.
 The cost analysis has considered unit operating (osts or a comparative basis. Existing plant elements which are
- The cost analysis has considered unit operating costs on a comparative basis. Existing plant elements which are not subject to change (or of minimal impact) perose the options have not been included in the assessment (for example existing pump stations). Elements included in the operating cost analyses include:
 - Electrical Fixed: Drives for additional operating items within the upgraded plant principally mixers and one clarifier scraper.
 - Electrical Variable: Drives for reatment of additional load principally aeration, RAS pumps, and filter feed pumps. Assumes 2 months per year with peak wet weather events.
 - Maintenance for additional process units installed under the upgrades. Key items such as diffusers, clarifier mechanism, pumps.
 - Biosolids Haulage Total additional haulage, assuming 18% dryness from screw presses being installed under the dewatering upgrade in progress.
 - Polyelectrolyte 1) g/dry tonne poly consumption as per typical requirement for screw presses being installed order the ewatering upgrade in progress.
 - Chlorine Additional secondary effluent flow off-set by reduced average dose due to additional CCT.

Table 7-4 summarises the compiled operating costs associated with the upgrades and additional loads associated with the Weinam Creek and South West Victoria Point developments, as estimated for the planning horizon (2041).

Table 7-4: Estimated Annual Additional Operating Costs at 2041 (\$AUD, 2020)

Upgrade	Electrical - Fixed	Electrical – Variable	Chemical - Variable	Maintenance - Fixed	Total Operating
Post-Anoxic / Re-Aeration Zone	\$9942 p.a.	\$9999 p.a.	Nil	\$6440 p.a.	26) 84 p.a.
Key elements	Mixers	Blowers		Diffuser replacement mechanica	\mathbf{P}
Additional Secondary Clarifier	\$2558 p.a.	\$1212 p.a.	Nil	\$18,62 07.	\$22,395 p.a.
Key elements	Bridge, Scum pump	RAS pumps		Mechanical	
Additional Chlorine Contact Tank	Nil	Nil	\$8133 p.a.		\$8133 p.a.
Key elements			Chlorine	$\langle \langle \rangle$	
Other Additional OPEX				. ·	
Power Consumption – Oxidation Ditch Aeration	Nil	\$20,412 p.a.		~	\$20,412 p.a.
Power Consumption – Additional Pumping (Filter Feed, miscellaneous)		\$3704 p.a.			\$3704 p.a.
Polyelectrolyte Consumption		G	\$7083 p.a.		
SUB-TOTALS	\$12,500 p.a.	\$35,300	\$5,200 p.a.	\$25,100 p.a.	\$88,110 p.a.
Biosolids Haulage	\$47,000 p.a. additional sludge haulage at \$65 /wet tonne \$72,300 p.a. additional sludge haulage at \$100 /wet tonne				
TOTAL ADDITIONAL OPEX	\$135,100 p.a. with additional sludge haulage at \$65 /wet tonne \$160,400 p.a. with additional sludge haulage at \$100 /wet tonne				
Note 1: Variable and total additional operating costs shown or operations at the 2041 design load					

7.3 WHOLE OF LIFE COSTS

The following assumptions have been applied to the estimation of the whole-of-life costs associated with treatment of the loads associated with the new developments:

- The analysis of options has been based on net present cost (or NPC) over a period of 40 years using the factors supplied by Redlands Sity, Council.
- It has been assumed that construction will commence in the 2022-23 financial year, and take approximately 2 years to complete. The analysis has assumed that 50% of the capital cost of the works is spent in each year of construction.
- The variable operational costs associated with the additional load are applied to the analysis based on the projected additional population from 2020-21. The additional fixed operating costs are only applied from completion of the works in 2023-2024.

Cost escalation factors as supplied by Redlands City Council were used to account for increases to electricity, labour, maintenance and other costs, and costs of capital as summarised in Table 7-5.

Table 7-5: Discount Rate and Escalation Factors applied to Whole-of-Life Cost Analysis

Parameter	Factor
Discount Rate (Weighted Average Cost of Capital)	7.00 % p.a.
Capital Escalation	1.07% (222) 1.43% F 1.7% F 1.7% F 738-23 27% F 23-24
Electricity Escalation	2.50% p.a.
Maintenance and Other Items Escalation (including biosolids haulage)	2,50 % p.a.
Chemicals and other Operating Costs Escalation	z.50 % p.a.

• The variable operational costs (e.g. chemical consumption, electrical power consumption and biosolids haulage) have been escalated through the NPC analysis in line with the applicable population projections.

The additional whole-of-life cost for the additional development are summarised in Table 7-6 below. Note 15-year NPC values have been given in addition to the prescribed 40-year NPCs, for information

Table 7-6 Additional Whole of Life Costs to Service New Developments (AUD, 2020)

Options	Total Whole of Life Cost (7% discount rate)	
Duration	15 years	40 years
Additional Costs with Biosolids Management at \$65 / we represent the property of the property	\$9.24m	\$10.31m
Additional Costs with Biosolids Management at \$100, were ne (AUD, 2020)	\$9.42m	\$10.68m

The estimated costs to treat the additional load from the South West Victoria Point and Weinam Creek Developments is \$10.31-10.68m over 40 years, depending on the cost of blosolids management applied.

As the whole-of-life cost includes \$8.512m in capital (AUD 2020), the capital cost comprises the majority of the servicing costs. The low contribution of operational costs is the result in the delay to the completion of the upgrade (2023-2024), and the low contributing population from the new developments in the initial years.

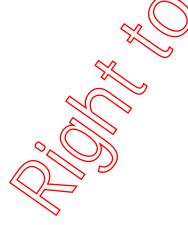
8 CONCLUSION AND RECOMMENDATIONS

The prevailing capacity of Victoria Point STP is limited to 38,300 EP by the ability of the secondary clarifiers to treat 5 x ADWF. The existing plant's ability to maintain compliance with the Total Nitrogen Mass Load Limit will be compromised at a similar load (38,700 EP).

Upgrades to three process areas will be required to treat the projected load of 7215 EP from the South Wey Victoria Point and Weinam Creek developments.

Concept designs were developed for each of the upgrade works proposed, and the associate capital costs estimated.

The scope, required timing and estimated capital costs of the required upgrades is summarized in Table 8-1.


Table 8-1: Summary of Required Plant Upgrades and Staging

Upgrade	Estimated Capital Cost	Require	d from
Post-Anoxic / Re-Aeration Zone)	\$1.289m Direct Job Cost	38,700 EP	2025
1 No. Additional Secondary Clarifier	\$2.255m Direct Job Cost	> 38,300 EP	2024
1 No. Additional Chlorine Contact Tank	\$0.296m Direct Job	38,700 EP	2025
Total Capital Cost (+/- 30% Accuracy Target)	Total Direct Job Cost finctuding Handover Total Project Cost (including	r): \$4.033M	

The additional operational costs required to treat the sewage load generated by the South West Victoria Point and Weinam Creek Developments were estimated in detail. The additional electricity consumption and biosolids haulage required to treat the load dominates the additional costs. In 2041 the planning horizon), the additional annual operating cost is \$135,100 p.a. with additional sludge haulage at \$65 wet tonne, increasing to \$160,400 p.a. if the rate for sludge haulage rises to \$100 /wet tonne.

The whole-of-life cost to treat the additional from the South West Victoria Point and Weinam Creek Developments is \$10.31-10.68m over 40 years depending on the cost of biosolids management.

The works to treat sewage loads from the new developments are required to be completed and in service by 2024-25. This suggests the upgrades should be undertaken under a single contract with procurement and design commencing in 2020-21.

9 REFERENCES

- Ang, C., & Sparkes, S. (November 2000). *Environmental Guidelines: Use and Disposal of Biosolids Products.* Sydney: Environment Protection Authority (NSW).
- de Haas, D. (2003). Discussions with EPA re: effluent Total N. Brisbane: GHD.
- Department of Environment and Science. (1 Jan 2020). End of Waste Code Biosolids (ENEW073 (2017)) Brisbane, Australia: State of Queensland.
- Eddy, M. a. (1991). Wastewater Engineering, Treatment Disposal Reuse. USA: Mc Graw Hill.
- Ekama, G. A., Barnard, J. L., Gunthert, F. W., Krebs, P., McCorquodale, J. A., Parker, D. S., & Wartserg, E. J. (1997). Secondary Settling Tanks: Theory, Modelling, Design and Operation. London: IAWG
- Ekama, G. A., Barnard, J. L., Parker, D. S., Wahlberg, E. J., Gunthert, F. W., Krebs, P., & McCorquodale, J. A. (1997). Secondary Settling Tanks – Theory, Modelling, Design and Operation, IAWQ Scientific and Technical Report No. 6. UK: IAWQ.
- Rieger, L., Gillot, S., Langergraber, G., Ohtsuki, T., Shaw, A., Takacs, I., & Winkler, S. (2013). Guidelines for Using Activated Sludge Models. London: IWA Publishing.
- Thompson, B., & Gray, M. (2011). National Screen Evaluation Facility, Inlet Screen Evaluation, Comparative report (1999-2011). London: UK Water Industry Research Limited.

Tyr Group. (July 2019). Victoria Point STP - Upgrades for New Developments Rhase 1 Report, Revision B.

US Environment Protection Agency, . (Revised July 2003, pp129.). Environment Bregulations and Technology - Control of Pathogens and Vector Attraction in Sewage Sludge,.

APPENDIX A: VICTORIA POINT WWTP - HYDRAULIC ANALYSIS

Level 1, 700 Springvale Road Mulgrave, Vic, 3170 Phone: (03) 9002 0710 info@cmpgroup.com.au www.cmpgroup.com.au

19/06/2019

Tyr Group PO Box 315 Bangalow NSW 2479

Attn: David Fligelman

Dear David,

Victoria Point WWTP - Hydraulic Analysis

1 Introduction

Tyr Group have commissioned CMP Consulting Group hydraulic analysis of the Victoria Point WWTP. The nominated cases assessed were

- 500 L/s influent + 345 L/s RAS
- 404 L/s influent + 279 L/s RAS
- 577 L/s influent and 400 L/s RAS

We have also looked at the flows that match the hydraulic profile provided.

There are some areas where we are missing information. This is either because of unclear or missing pump data or information that we are unable to determine from the drawings.

We have not looked at apposite the chemical dosing.

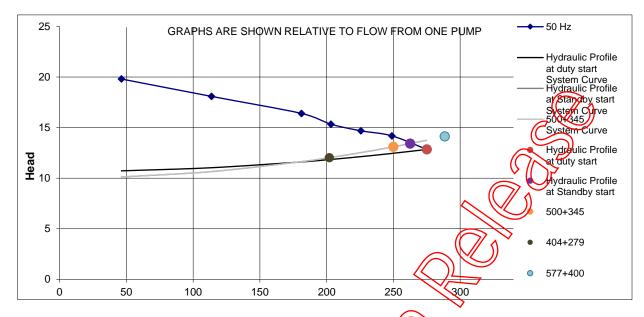
The following is a suggenary of our findings.

2

2.1 Inlet Pomp Station

Results

Depending upon operating level in the well and the level in the inlet works (modelled at the nominated vigures of 8.36m) as well as which pumps are running, pump 1 should produce approximately 275 L/s of flow (red dot on the following graph). This matches the SCADA data provided. Both pumps running should produce around 525 L/s. This is right on the end of the pump curve and will operate with cavitation assuming that the full pump curve has been shown in the data provided. We have not been able to find other published data for this pump.


TYR-190531 Summary Report Rev 3

CMP Consulting Group Pty Ltd ABN 52 133 162 357 Phone (03) 9002 0710 Level 1, 700 Springvale Road, Mulgrave, VIC, 3170

The nominated cases where the inlet flow is 500 L/s (250 L/s per pump – dark grey dot) and 404 L/s (202 L/s per pump - yellow dot) are achievable. The one where the inlet flow is 577 L/s (288.5 L/s per pump – blue dot) is not achievable without replacing the pumps.

2.2 Inlet Channel

Hydraulic losses along the channel are only 2mm + what over losses occur as a result of the grit screw, the step screen and the vortex grit trap. There is no flow vs pressure loss information in VoR's documentation for these.

2.3 Pipe from Inlet Channel to Anaerobic Reactor

Losses are 54 mm at 500 L/s, 35 mm at 404 L/s and 71 mm at 577 L/s. The hydraulic profile shows a drop of 110 mm. This would match a flow of around 727 L/s.

2.4 Anaerobic Reactor and Oxidation Ditch

The flooded weir entering the Anaerobic Reactor can take larger flows than any of the nominated cases without exceeding the hydraulic profile levels.

2.5 Weir Oxidation Ditch

The tilting weir on the outlet of the oxidation ditch provides enough freeboard (at least 300mm) in the oxidation ditch for all three nominated flows.

2.6 Pipe from Oxidation Ditch to Mixed Liquor Distributor

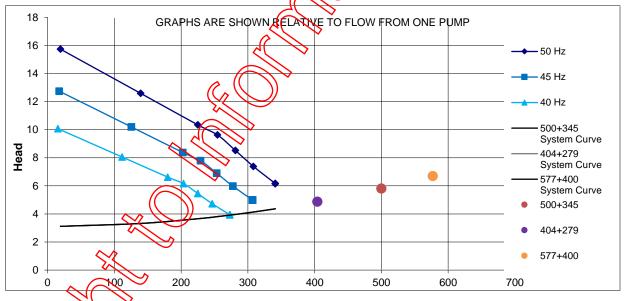
Losses are in the order of 27mm at a flow of 180 L/s, 108mm at a flow of 360 L/s and to match the hydrautic profile, the flow through this pipe is in the order of 1460 L/s.

2.7 Across Weir in Mixed Liquor Distributor

We have assessed the flow going to each clarifier on the basis of matching the hydraulic profile and also how much could be achieved if you only allowed for 300mm freeboard in the central chamber.

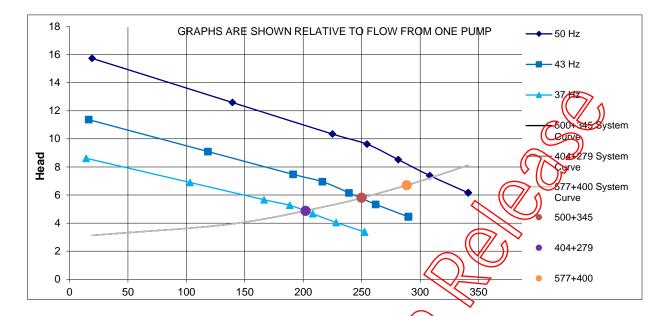
Matching the hydraulic profile, the flow is 340 L/s for each clarifier or 680 L/s total. The maximum flow allowing for minimum freeboard is over 1400 L/s combined.

2.8 Pipe from Mixed Liquor Distributor to Clarifier


Losses are 229 mm for 500+345 L/s, 157 mm for 404+279 L/s, 306 for 577+400 Us To match the hydraulic profile, the flow through the pipe is in the order of 517 L/s. This is per charifier. Flow capacity is above the nominal figures.

2.9 Pipe from Clarifier to Filter Feed Tank

Losses are 11mm for 180 L/s, 43 mm for 360 L/s and to match the hydraulic profile, the flow through the pipe is in the order of 754 L/s. This is a combined flow. The flow out of each of the clarifiers will be half of these.


2.10 Filter Feed Tank to Filters

This is a pumped system and while the calculation has been set up, the information on the pumps doesn't make much sense for single pump duty. The figures show the pumps running way off the end of the curve. With one pump running, this should not work at any flow rate.

If two pumps are put into service, the increased back pressure puts the system curve into a position where the pumps are operable at all of the nominated flow rates. For changes to the existing system, the actual flow rate required by these pumps will need to be checked once the PFD has been fully developed and there would be no standby.

2.11 Filters

Hydraulic gradient through clean media is $h = \frac{6 (1-e)V^2}{d e^3 a}$ (5 ke^-1) 0.4 Re^-0.1)

- e = media voidage
- d = hydraulic size of media
- V = Filtration rate
- Re = Reynolds number in media

In practical analysis, this cannot be worked out without a lot more information. The most effective way to address the hydraulic capacity of the filters is to look at the headlosses against outlet control valves and then extrapolate from there. If you are able to provide operational information on the range of valve positions against do we could potentially do an estimate of the maximum possible flow rate.

A possible approximation would be to base the flow rate on 10 m/hr through the filters. This gives a flow of 442 L/s which is less than two of the three nominated conditions.

2.12 Filtered Water Holding Tank to Chlorine Contact Tank Inlet

Losses are 88 mm for 500 L/s, 58 mm for 404 L/s and 117 mm for 577 L/s. To match the hydraulic profile, the flow through the pipe is in the order of 1012 L/s.

2.13 Chlorine Contact Tank Outlet Weirs

To match the figures on the hydraulic Profile, the flow over the weir to the old secondary clarifiers is in the order of 1610 L/s. The flow over the weir to the outfall is 4835 L/s.

There is hydraulic data for a final manhole, but the location of this manhole is not shown on the drawings, so we are unable to model this.

2.14 Waste Activated Sludge Pumps

These pumps are progressive cavity rated at 8.3 L/s with a very steep curve. The actual flow rate will depend upon the pump condition, particularly of the stator. If the pump is in good condition, then the flow rate of 1 L/s should be a reasonable assumption.

2.15 Return Activated Sludge Pumps

The nominated duty point per pumps on the test data is 77 L/s. The nominated duty in the summary of unit sizing is 94 L/s. Assuming consistency of water, the plant should be able achieve over 90 L/s per pump. Thicker sludge will drop that value.

The nominated RAS flows of 345 L/s (86.25 L/s per pump) and 279 L/s (69.75 L/s per pump) are achievable. The flow of 400 L/s is not achievable without replacing the pumps.

2.16 Foul Water Return Pumps

We need clarification on pump performance data. Foul water pumps and belt press filtrate pumps have been filed together without labelling.

2.17 Conclusion

The limitations on the system are

- Inlet Pumps The existing pumps are not capable of achieving the 577 L/s between them.
- Filter Feed Pumps The performance data from the existing pumps provided does not match the analysis for single pump duty. The curves for these pumps need to be confirmed.
- Fitters The existing filters are likely to be insufficient. More filter area is required.

RAS Pumps – The highest of the three RAS flows assessed is not achievable.

Yours faithfully

Lachlan Douglas

	Calculation	CMP Consulting Group I Level 1, 700 Springvale Mulgrave VIC 3170 Phone (03) 9002 0710 www.cmpgroup.com.au	Road,	(
Client:			Description:		
	Tyr Group		Plant Hyd	raulic Analysis	
Project:					\bigcirc
	Victoria Pt WWTP Analysis		Doc No:		Revi
Revision	Issued for:	Prepared	Date	-190531 CAL Checked Date	01 3 Approved Date
1	Preliminary Issue	LD	17/06/2019	Unconcu Dute	
2	Issued for Review	LD	19/06/2019	Still to be checked	$\langle \rangle \rangle$
3	Final	LD	19/06/2019	GC 19/06/2019	
					\bigcirc
					>
				\mathcal{C}	
			0.	$\left(\begin{array}{c} \end{array}\right)$	
			X		
			$-\overline{\bigcirc}$	Ø	
			\rightarrow ())	7	
		h l	\checkmark		
			<u> </u>		
			3		
	(\times			
	~ {(\searrow			
		\$			
	\sim				
	2 A				
	\sim				
	× // ×				
	$\langle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle $				
	\sim				
					Page 1 of

Calculation Pump Station Head	CBP Cessifing Group Py Ltd Office J, Level 1, 708 Springens Read, Mingrane VU 2, 378 Phone (2) 9902 2179	
----------------------------------	---	--

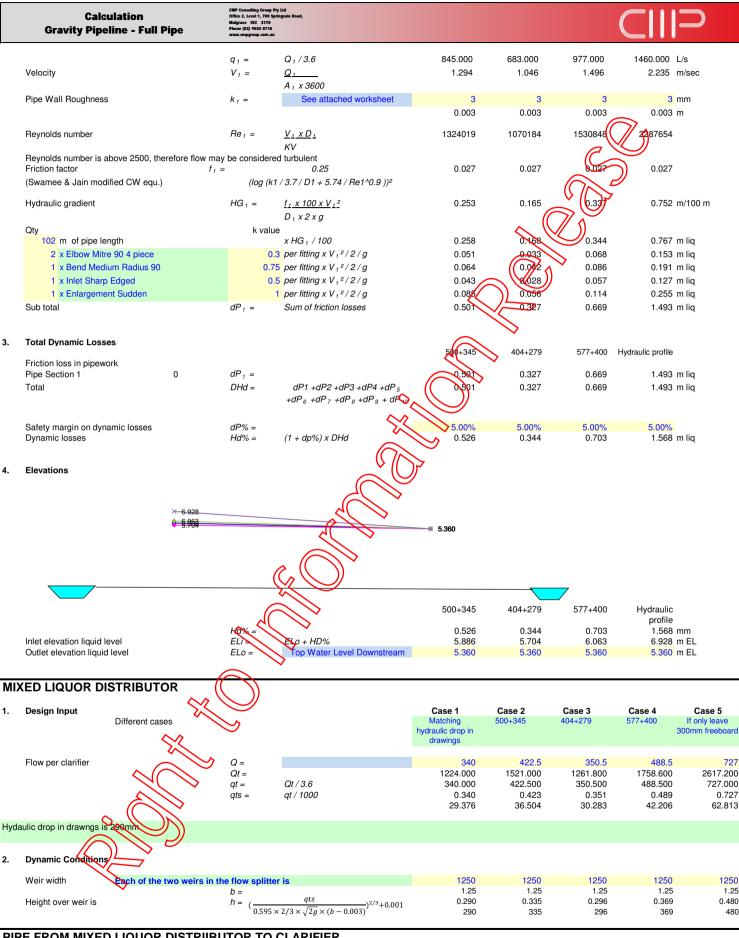
INLET PUMP STATION

Design Input	Different cases for differen	t flows and/or e	levations but same piping system	Case 1 Hydraulic Profile at duty start	Case 2 Hydraulic Profile at Standby start	Case 3 500+345	Case 4 404+279	Case 5 577+400
Pump Type	Submersible						_	
No of duty pumps		PN =	Overska an the Overlage Overse	1	2	2	\square	2
Total flow		Q =	Graphs on the System Curve wo Choose units from drop down	275	525	500		577 L/s
		Qt =		990.000	1890.000	1800.000	1454 400	2077.200 m³/hr
		qt =	Qt / 3.6	275.000 0.275	525.000 0.525	500.000 0.500	104.000 0.404	577.000 L/s 0.577 m³/s
				23.760	45.360	43.200	34.906	49.853 ML/d
Flow per pump				275	262.5	250	202	288.5 L/s
now per pump		Qp =	Qt / PN	990.000	945.000	800.000	727.200	1038.600 m ³ /hr
		qp =	Qp / 3.6	275.000	262.500	\$50,000	202.000	288.500 L/s
Pumped liquid:	water							
Density of pumped li Density of water	quid	Dens = Dens _{H2O} =		1000 1000	1000	1000	1000 1000	1000 kg/m ³ 1000 kg/m ³
Kinematic Viscosity	of liquid	KV =	25 C	8.910E-07	8.910E-07	8.9 E-07	8.910E-07	8.910E-07 m²/s
-		KVcst =	KV x 1E6	0.891	0.89	0.891	0.891	0.891 cSt
Static Conditions								
					\bigcirc $`$			
					$\langle \rangle$	8.360)	
					\mathbb{N}^{\sim}			
				(C)	\mathcal{H}^{\diamond}			
	<u>↓ -3.959</u>			o.t))			
	2.000		-4.00	0	9			
				\times				
2.1 Pump			((Hydraulie Profile	Hydraulic Profile	500+345	404+279	577+400
-			\sim	at duty start	at Standby start			
Elevation of pump		ELp =		-4.000	-4.000	-4.000	-4.000	-4.000 m EL
2.2 Suction				\sim				
Elevation liquid level		ELsI =		-2.300	-1.650	-1.650	-1.650	-1.650 m EL
Liquid pressure at pu		SPI =	ELsI - ELp	1.700	2.350	2.350	2.350	2.350 m liq
Air or gas pressure		SPg =	e.g. pumping from pressurised					kPag
	ad dua ta air araaaura		SPg / Dens / g x 1E3		0.000	0.000	0.000	Ť
	ad due to air pressure	SPm =		0.000	0.000	0.000	0.000	0.000 m liq
Static suction head		SHs =	SPL SRm	1.700	2.350	2.350	2.350	2.350 m liq
2.3 Discharge								
Elevation liquid level		ELdl		8.360	8.360	8.360	8.360	8.360 m EL
Liquid pressure at pu	ump	DPI =	ELdi - Fip	12.360	12.360	12.360	12.360	12.360 m liq
Air or gas pressure		DPg =	g. pumping to pressurised					kPag
Equivalent liquid hea	ad due to air pressure	DPm =	system DPg / Dens / g x 1E5	0.000	0.000	0.000	0.000	0.000 m liq
		()	DPI + DPm					
Static discharge hea		DHE	υΓι + υΓιΙΙ	12.360	12.360	12.360	12.360	12.360 m liq
2.4 Static Head	d	\searrow						
Static differential hea	ad 🔀	Hs =	DHs - SHs	10.660	10.010	10.010	10.010	10.010 m liq
	/	<u>y</u>						
Dynamic Condition	s VVV	-						
3.1 Suction	$\langle \rangle \rangle$							
Pipe Section 1	Norusa			Hydraulic Profile	Hydraulic Profile	500+345	404+279	577+400
Pipe Section 2	Not used			Hydraulic Profile		500+345	404+279	577+400
Pipe Section 3	Not Used			Hydraulic Profile		500+345	404+279	577+400
Pipe Section 4	Not Lised			Hydraulic Profile	Hydraulic Profile	500+345	404+279	577+400
3.2 Discharge	~							
Pipe Section 5	Pump Discharge			Hydraulic Profile	Hydraulic Profile	500+345	404+279	577+400
Pipe size	DICL?			DN375	DN375	DN375	DN375	DN375 mm
Inside Diameter		d ₅ =	Use accurate internal diameter	406	406	406	406	406 mm
		D 5 =	from tables $d_5/1000$	0.406	0.406	0.406	0.406	0.406 m
Area				0.129	0.129	0.129	0.129	0.129 m ² are
Area		<i>A</i> ₅ =	Π / 4 x D ₅ ²					0.129 m ² are

Number of streams for total flow	S ₅ =	Default from Design Inputs	1	2	2	2	2
Flow for this pump station		Default from previous section	990	945	900	727.2	1038.6 m ³ /hr
Additional flows from another source		Use for multiple stations, dosing					m3/hr
Total flow for this pipe section	Q ₅ =	points etc	990.000	945.000	900.000	727.200	1038.600 m³/h
rotar now for this pipe section	$q_5 = q_5 =$	Q ₅ /3.6	275.000	262.500	250.000	202.000	288.500 L/s
Velocity	$V_5 = V_5 =$	\underline{Q}_5	2,124	2.028	1.931	1.560	2.228 m/sec
Velocity	• 5 -	A ₅ x 3600	2.124	2.020	1.001	1.500	2.220 11/360
Pipe Wall Roughness	k ₅ =		3	3	3	3	3 mm
	5		0.003	0.003	0.003	0.002	0.003 m
Reynolds number	Re 5 =	$\underline{V}_5 \times D_5$	967919	923923	879926	710981	1015435
		KV				$\langle \$	
Reynolds number is above 2500, therefore flow ma	ay be considere	d turbulent			G	\sim J	
Friction factor f ₅	=	0.25	0.034	0.034	0.034	0.034	0.034
(Swamee & Jain modified CW equ.)	(log (kt	5 / 3.7 / D5 + 5.74 / Re5^0.9))²					
					\square	× ×	
Hydraulic gradient	HG 5 =	$f_5 \times 100 \times V_5^2$	1.950	1.777	1.672	1.054	2.146 m/100 m
		<i>D</i> ₅ x2xg				<i>у</i>	
Quantity	k valu						
15 m of Pipe length		x HG ₅ / 100	0.293	0.267	0.942	0.158	0.322 m liq
2 x Elbow Short Radius 90		1 per fitting x $V_{5^2}/2/g$	0.460	0.419	0.380	0.248	0.506 m liq
1 x Valve - Check conventional 1 x Valve - Gate		4 per fitting x $V_5^2/2/g$ 2 per fitting x $V_5^2/2/g$	0.552 0.046	0.508	0.456	0.298 0.025	0.607 m liq
1 x Valve - Gate 1 x Expander 4:5		$\frac{2}{5}$ per fitting x V ₅ ² / 2 / g	0.046	0.042	0.038	0.025	0.051 m liq 0.038 m liq
Sub total	$dP_5 =$	Sum of friction losses	1.385	1 262	1.145	0.019	1.524 m liq
	 5 -	Sam or motion 106666	1.505	1.200	7 1.143	0.747	1.027 III IIQ
Pipe Section 6 Pump station header			Hydraulic Profile	Aydraulio Profile	500+345	404+279	577+400
Pipe size DICL			DN50	DN500	DN500	DN500	DN500 mm
Inside Diameter	d ₆ =	Use accurate internal diameter	ATT	472	472	472	472 mm
	_	from tables	()	\mathcal{N}_{\sim}			
	D ₆ =	d ₆ / 1000	0,472) 0.472	0.472	0.472	0.472 m
Area	A ₆ =	$\Pi / 4 \times D_6^2$	0.175	0.175	0.175	0.175	0.175 m² area
			SX V	0			0
Number of streams for total flow	S ₆ =	Default from Design Inputs	990,000	2	2	2	2 1000.000 m³/hr
Flow for this pump station		Default from previous section Use for multiple stations, dosing	900000	945.000	900.000	727.200	1038.600 m ³ /hr
Additional flows from another source		points etc					m3/hr
Total flow for this pipe section	Q ₆ =		990.000	945.000	900.000	727.200	1038.600 m³/h
	q ₆ =	$Q_{6}/3.6$	275.000	262.500	250.000	202.000	288.500 L/s
Velocity	$V_6 =$		1.572	1.500	1.429	1.154	1.649 m/sec
		A ₆ × 3600	•				
Pipe Wall Roughness	$k_{6} =$	See attached worksheet	3	3	3	3	3 mm
			0.003	0.003	0.003	0.003	0.003 m
	_						
Reynolds number	Re ₆ =	\underline{V}_{6} \mathbf{D}_{6}	832575	794730	756886	611564	873446
		K					
Reynolds number is above 2500, therefore flow ma		d turbulent	0.000	0.000	0.000	0.000	0.000
	3= //ac////		0.033	0.033	0.033	0.033	0.033
(Swamee & Jain modified CW equ.)	(log (ke	6 8.7 + D6 + 5.74 / Re6^0.9)) ²					
Hydraulic gradient	HG ₆	76X 100 X V62	0.876	0.799	0.725	0.474	0.964 m/100 m
Jaradio gradiont		$\frac{1}{6}$ x 2 x q	0.070	0.799	0.723	0.7/4	0.00+ m/100 m
Quantity	k valu						
6 m of Pipe length		x HG ₆ / 100	0.053	0.048	0.043	0.028	0.058 m liq
1 x Tee - in line		6 per fitting x $V_{6^2}/2/g$	0.076	0.069	0.062	0.041	0.083 m liq
1 x Elbow Short Radius 45		4 per fitting x $V_{6^2}/2/g$	0.050	0.046	0.042	0.027	0.055 m liq
1 x Reducer 5:4	0.1	5 per fitting x $V_{6^2}/2/g$	0.019	0.017	0.016	0.010	0.021 m liq
Sub total	de a	Sum of friction losses	0.197	0.180	0.163	0.107	0.217 m liq
\sim	<u> </u>						
Pipe Section 7 Flowmeter			and the second second	Hydraulic Profile	500+345	404+279	577+400
Pipe size	2		DN400	DN400	DN400	DN400	DN400 mm
Inside Diameter	<i>d</i> ₇ =	Use accurate internal diameter from tables	372	372	372	372	372 mm
	D ₇ =	$d_7/1000$	0.372	0.372	0.372	0.372	0.372 m
Area	A ₇ =	$\Pi / 4 \times D_{7^{2}}$	0.109	0.109	0.109	0.109	0.109 m² area
		·					
Number of streams for total flow	<i>S</i> ₇ =	Default from Design Inputs	1	1	1	1	1
Flow for this purpostation		Default from previous section	990.000	1890.000	1800.000	1454.400	2077.200 m ³ /hr
Additional flows from another source		Use for multiple stations, dosing					m3/hr
Total flow for this size action	0	points etc	000.000	1000.000	1000.000	1454 400	0077 000 m ^{2/}
Total flow for this pipe section	Q ₇ =	0-/36	990.000 275.000	1890.000 525.000	1800.000 500.000	1454.400 404.000	2077.200 m³/h 577.000 L/s
Velocity	q ₇ = V ₇ =	Q ₇ /3.6 <u>Q</u> 7	275.000 2.530	525.000 4.830	4.600	404.000 3.717	577.000 L/s 5.309 m/sec
volocity	v 7	<u>Q</u> 7 A ₇ x 3600	2.000	4.000	4.000	5./1/	5.505 III/Sec
Pipe Wall Roughness	k ₇ =	See attached worksheet	3	3	3	3	3 mm
po train roughilloo			0.003	0.003	0.003	0.003	0.003 m
			0.000	0.000	0.000	5.000	0.000 111
Reynolds number	Re ₇ =	<u>V</u> ₇ x D ₇	1056385	2016735	1920700	1551925	2216488
Reynolds number	Re ₇ =	<u>V</u> ₇ x D ₇	1056385	2016735	1920700	1551925	2216488

Friction factor		f ₇ =	0.25	0.035	0.035	0.035	0.035	0.035
(Swamee & Jain moo	dified CW equ.)	(log (k/	7 / 3.7 / D7 + 5.74 / Re7^0.9))²					
Hydraulic gradient		HG 7 =	$\frac{f_7 \times 100 \times V_7^2}{D_7 \times 2 \times g}$	3.105	11.302	10.252	6.696	13.650 m/10
Quantity		k valu						
4.5 m of Pipe le	•	0.1	$x HG_7 / 100$	0.140	0.509	0.461	0.301	0.614 m liq
1 x Expander 1 x Bend Lone			5 per fitting x V_7^2 / 2 / g 4 per fitting x V_7^2 / 2 / g	0.049 0.131	0.178 0.476	0.162 0.431		0.215 m liq 0.575 m liq
Sub total	y naulus 90	dP ₇ =	Sum of friction losses	0.319	1.163	1.055	0.262	1.404 m liq
		- /					\mathcal{C}	- 1
Pipe Section 8				Hydraulic Profile		500+345	4047279	577+400
Pipe size		d	Use accurate internal diameter	DN500	DN500	DN500		DN500
Inside Diameter		d ₈ =	from tables	538	538	538	538	538 mm
		D 8 =	<i>d</i> ₈ / 1000	0.538	0.538	0.588	0.538	0.538 m
Area	(\cap)	A ₈ =	П / 4 х D ₈ ²	0.227	0.227		0.227	0.227 m ² ar
Number of streams f	or total flow	S ₈ =	Default from Design Inputs	1	1		, 1	1
Flow for this pump st		08-	Default from previous section	990.000	1890.000	1800.900	1454.400	2077.200 m ³ /hr
Additional flows from			Use for multiple stations, dosing					m3/h
T . 14 4 4 5 5		0	points etc	000.000			1 15 1 100	0077.000 04
Total flow for this pip	e section	Q ₈ =	Q ₈ /3.6	990.000 275.000	1890.000	1800.000	1454.400 404.000	2077.200 m ³ /h 577.000 L/s
Velocity		q ₈ = V ₈ =	$Q_8/3.6$	1.210	2200	2.199	404.000	2.538 m/se
Velocity		• 8 -	A ₈ x 3600	1.210	2.000	2.100		2.000 11/00
Pipe Wall Roughness	3	k ₈ =	See attached worksheet	3	3	3	3	3 mm
				0.00	0,003	0.003	0.003	0.003 m
Develop						(000	10700-0	4500500
Reynolds number		Re ₈ =	<u>V</u> 8 x D8 <i>KV</i>	780437	7394471	1328067	1073079	1532590
Revnolds number is	above 2500, therefore flow n	nav be considere		0)			
Friction factor		$f_8 =$	0.25	0.032	0.032	0.032	0.032	0.031
(Swamee & Jain mod			3 / 3.7 / D8 + 5.74 / Re8^0.9))²	200				
Hydraulic gradient		HG ₈ =	$\frac{f_8 \times 100 \times V_8^2}{D_8 \times 2 \times g}$	0.438	1.592	1.444	0.943	1.922 m/10
Quantity		L						
Quantity		k valu	e (O)	\sim				
6 m of Pipe le	ength	k valu	e x HG ₈ / 100	0.026	0.096	0.087	0.057	0.115 m liq
6 m of Pipe le 1 x Elbow Sho	ort Radius 90		$x HG_8 / 100$ 1 per fitting $x V_8^2 / 2 / 2$	0.075	0.272	0.247	0.161	0.328 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargeme	ort Radius 90		x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075	0.272 0.272	0.247 0.247	0.161 0.161	0.328 m liq 0.328 m liq
6 m of Pipe le 1 x Elbow Sho	ort Radius 90		$x HG_8 / 100$ 1 per fitting $x V_8^2 / 2 / 2$	0.075	0.272	0.247	0.161	0.328 m liq 0.328 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargeme	ort Radius 90		x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075	0.272 0.272	0.247 0.247	0.161 0.161	0.328 m liq 0.328 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10	ort Radius 90 ent Sudden Not Used Not Used		x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile	0.247 0.247 0.580 500+345 500+345	0.161 0.161 0.379 404+279 404+279	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9	ort Radius 90 ent Sudden Not Used		x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile	0.247 0.247 0.580 500+345 500+345 500+345	0.161 0.161 0.379 404+279	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10	ort Radius 90 ent Sudden Not Used Not Used Not Used		x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile	0.247 0.247 0.580 500+345 500+345	0.161 0.161 0.379 404+279 404+279 404+279	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400
6 m of Pipe le 1 x Elbow Sho 1 x Enlargemo Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing	ort Radius 90 ent Sudden Not Used Not Used Not Used		x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile	0.247 0.247 0.580 500+345 500+345 500+345	0.161 0.161 0.379 404+279 404+279 404+279	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400
6 m of Pipe le 1 x Elbow Sho 1 x Enlargemo Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing	Not Used Not Used Not Used Not Used Not Used	dP ₈ =	x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile	0.247 0.247 0.580 500+345 500+345 500+345	0.161 0.161 0.379 404+279 404+279 404+279	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1	Not Used Not Used Not Used Not Used Not Used ses n pipework Not used	$dP_8 =$	x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2	Not Used	$dP_8 =$ $dP_1 =$ $dP_2 =$	x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 00+345	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000 0.000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 3	Not Used	$dP_8 =$	x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000	577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 3 Pipe Section 4	Not Used	$dP_8 =$ $dP_1 =$ $dP_2 =$ $dP_3 =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.04 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 3	Not Used	$dP_8 =$ $dP_1 =$ $dP_2 =$	x HG ₈ / 100 1 per fitting x V ₈ ² / 2 / 2 1 per fitting x V ₈ ² / 2 / 9	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 3 Pipe Section 4	Not Used Not Used Not Used Not Used Not Used Not used Not used Not Used Not Used	$dP_8 =$ $dP_1 =$ $dP_2 =$ $dP_3 =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.04 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in dischargements Pipe Section 5	Not Used Software pipework Pump Discharge	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{4} =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 1.385	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000 0.000 0.000 1.145	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargeme Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in discharge Pipe Section 5 Pipe Section 6	Not Used	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{4} =$ $dP_{6} =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 1.385 0.197	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile dt Standby start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in discha Pipe Section 5 Pipe Section 6 Pipe Section 7	Not Used Software pipework Pump Discharge	$dP_{8} =$ dP_{1} $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{4} =$ $dP_{6} =$ $dP_{7} =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile dydraulic Profile at Standby start 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345 500+345 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.217 m liq 1.404 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargemu Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 3 Pipe Section 4 Total Friction loss in disch: Pipe Section 5 Pipe Section 6 Pipe Section 7 Pipe Section 8	Not Used Not Used Not Used Not Used Not Used Res n pipework Not used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used	$dP_{8} =$ dP_{1} $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{6} =$ $dP_{7} =$ $dP_{8} =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile at Standby start 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.0000 0.0000 0.0000 0.000000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.217 m liq 1.404 m liq 0.772 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in disch: Pipe Section 5 Pipe Section 7 Pipe Section 7 Pipe Section 8 Pipe Section 9	Not Used Rege pipework Pump Discharge Pump station header Flowmeter Not Used Not Used Not Used Not Used	$dP_{8} =$ dP_{1} $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{6} =$ $dP_{7} =$ $dP_{8} =$ $dP_{9} =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.0000 0.0000 0.0000 0.000000	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 1.404 m liq 0.772 m liq 0.772 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargemu Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 3 Pipe Section 4 Total Friction loss in disch: Pipe Section 5 Pipe Section 6 Pipe Section 7 Pipe Section 8	Not Used Not Used Not Used Not Used Not Used Res n pipework Not used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used Not Used	$dP_{8} =$ dP_{1} $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{6} =$ $dP_{7} =$ $dP_{8} =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile at Standby start 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.0000 0.0000 0.0000 0.000000	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 1.404 m liq 0.772 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 3 Pipe Section 3 Pipe Section 4 Total Friction loss in discharge Pipe Section 5 Pipe Section 5 Pipe Section 7 Pipe Section 7 Pipe Section 8 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 10	Not Used Not Used	$dP_{6} =$ dP_{1} $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{7} =$ $dP_{6} =$ $dP_{9} =$ $dP_{10} =$	$x HG_{\theta} / 100$ 1 per fitting x $V_{\theta}^2 / 2 / 4$ 1 per fitting x $V_{\theta}^2 / 2 / 5$ Sum of friction bases	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile dt duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.747 0.107 0.689 0.379 0.000 0.000	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.217 m liq 0.772 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 3 Pipe Section 3 Pipe Section 4 Total Friction loss in dischargent Pipe Section 5 Pipe Section 7 Pipe Section 10 Control Valve	Not Used Not Used	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{6} =$ $dP_{6} =$ $dP_{6} =$ $dP_{6} =$ $dP_{6} =$ $dP_{10} =$ $dP_{10} =$ $dP =$	$x HG_{8} / 100$ 1 per fitting $x V_{8}^{2} / 2 / 4$ 1 per fitting $x V_{8}^{2} / 2 / 9$ Sum of friction bases $dP_{1} + dP_{2} + dP_{3} + dP_{4}$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile dt duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.1262 0.180 1.163 0.639 0.000 0.000 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.580 0.580 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.379 0.000 0.000 0.000 0.000	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.217 m liq 0.772 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suctio Pipe Section 1 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in discha Pipe Section 5 Pipe Section 7 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 10 Control Valve Total Summary	Not Used Not Used Not Used Not Used Not Used ses n pipework Not Used	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{7} =$ $dP_{6} =$ $dP_{7} =$ $dP_{9} =$ $dP_{10} =$ $dP =$ $DHd =$	$x HG_{8} / 100$ 1 per fitting $x V_{8}^{2} / 2 / 4$ 1 per fitting $x V_{8}^{2} / 2 / 9$ Sum of friction bases $dP_{1} + dP_{2} + dP_{3} + dP_{4}$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.580 0.580 0.000 0.000 0.000 0.000 0.000 0.000 0.2,942 500+345	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.379 0.000 0.379 0.000 0.000 0.000 0.000 0.379 404+279	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.217 m liq 0.217 m liq 0.217 m liq 0.772 m liq 0.000 m liq 3.918 m liq 577+400
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in dischar- Pipe Section 5 Pipe Section 7 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 10 Control Valve Total	Not Used Not Used	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{6} =$ $dP_{6} =$ $dP_{6} =$ $dP_{6} =$ $dP_{6} =$ $dP_{10} =$ $dP_{10} =$ $dP =$	$x HG_{8} / 100$ 1 per fitting $x V_{8}^{2} / 2 / 4$ 1 per fitting $x V_{8}^{2} / 2 / 9$ Sum of friction bases $dP_{1} + dP_{2} + dP_{3} + dP_{4}$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.1385 0.197 0.319 0.175 0.000 0.000 0.000 0.000 0.2077 Hydraulic Profile	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile dt Standby start 0.000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.379 0.379 0.379 0.0000 0.0000 0.0000 0.0000 0.000000	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 1.524 m liq 0.217 m liq 1.404 m liq 0.772 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargemu Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 3 Pipe Section 4 Total Friction loss in dischar Pipe Section 5 Pipe Section 5 Pipe Section 7 Pipe Section 9 Pipe Section 9 Pipe Section 10 Control Valve Total Summary Safety margin prodyr Suction dynamic Loss Discharge dynamic Market	Not Used Not Used	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{7} =$ $dP_{6} =$ $dP_{9} =$ $dP_{10} =$ $dP =$ $DHd =$ $dP\% =$ $DHd\% =$	$x HG_{8} / 100$ 1 per fitting x V ₈ ² / 2 / 4 1 per fitting x V ₈ ² / 2 / 9 Sum of friction beses $dP_{1} + dP_{2} + dP_{3} + dP_{4}$ $dP_{5} + dP_{6} + dP_{7} + dP_{8} + dP_{9} + dP_{10}$ $(1 + dp\%) \times SHd$ $(1 + dp\%) \times SHd$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.2077 Hydraulic Profile at duty start 5.00% 0.000 2.181	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.244 Hydraulic Profile at Standby start	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345 500+345 0.0000 0.0000 0.0000 0.0000 0.000000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.921 404+279	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.200 m liq 0.200 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Enlargemu Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in discharge Pipe Section 5 Pipe Section 6 Pipe Section 7 Pipe Section 7 Pipe Section 7 Pipe Section 7 Pipe Section 7 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 10 Control Valve Total Summary Safety margin or dyn	Not Used Not Used	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{7} =$ $dP_{8} =$ $dP_{9} =$ $dP_{10} =$ $dPV =$ $DHd =$ $dP\% =$ $SHd\% =$	$x HG_{8} / 100$ 1 per fitting $x V_{8}^{2} / 2 / 4$ 1 per fitting $x V_{8}^{2} / 2 / 9$ Sum of friction bases $dP_{1} + dP_{2} + dP_{3} + dP_{4}$ $dP_{5} + dP_{6} + dP_{7} + dP_{8} + dP_{9} + dP_{10}$ $(1 + dp\%) \times SHd$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile dudy start 0.0000 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.000000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345 0.0000 0.0000 0.0000 0.000000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.379 0.000 0.379 0.000 0.000 0.921 404+279	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.200 m liq 0.200 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq
6 m of Pipe le 1 x Elbow Shu 1 x Elbow Shu 1 x Enlargemu Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 3 Pipe Section 4 Total Friction loss in dischar Pipe Section 5 Pipe Section 6 Pipe Section 7 Pipe Section 7 Pipe Section 7 Pipe Section 7 Pipe Section 7 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 10 Control Valve Total Summary Safety margin prodyn Suction dynamic Loss	Not Used Not Used	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{7} =$ $dP_{6} =$ $dP_{9} =$ $dP_{10} =$ $dP =$ $DHd =$ $dP\% =$ $DHd\% =$	$x HG_{8} / 100$ 1 per fitting x V ₈ ² / 2 / 4 1 per fitting x V ₈ ² / 2 / 9 Sum of friction beses $dP_{1} + dP_{2} + dP_{3} + dP_{4}$ $dP_{5} + dP_{6} + dP_{7} + dP_{8} + dP_{9} + dP_{10}$ $(1 + dp\%) \times SHd$ $(1 + dp\%) \times SHd$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.2077 Hydraulic Profile at duty start 5.00% 0.000 2.181	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile at Standby start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.244 Hydraulic Profile at Standby start	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345 500+345 0.0000 0.0000 0.0000 0.0000 0.000000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.921 404+279	0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.217 m liq 0.217 m liq 0.772 m liq 0.000 m liq 0.000 m liq 3.918 m liq 577+400
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in discharge Pipe Section 5 Pipe Section 7 Pipe Section 9 Pipe Section 9 Pipe Section 10 Control Valve Total Summary Safety margin or dyn Suction dynamic losses	Not Used Not Used Not Used Not Used ses n pipework Not Used <	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{7} =$ $dP_{8} =$ $dP_{9} =$ $dP_{10} =$ $dP =$ $DHd =$ $dP\% =$ $DHd\% =$ $Hd\% =$	$x HG_{8} / 100$ 1 per fitting x V ₈ ² / 2 / 4 1 per fitting x V ₈ ² / 2 / 9 Sum of friction lusses $dP_{1} + dP_{2} + dP_{3} + dP_{4}$ $dP_{5} + dP_{6} + dP_{7} + dP_{8} + dP_{9} + dP_{10}$ $(1 + dp%) \times SHd$ $(1 + dp%) \times SHd$ $(1 + dp%) \times SHd$ $SHd% + Dhd%$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile Hydraulic Profile at Standby start 0.0000 0.000 0.0000 0.0000 0.0000 0.000000	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 0.000 m liq 0.000 m liq 1.524 m liq 0.772 m liq 0.000 m liq 0.000 m liq 0.000 m liq 1.918 m liq 577+400
6 m of Pipe le 1 x Elbow Sho 1 x Enlargem Sub total Pipe Section 9 Pipe Section 10 Control Valve Sizing Total Dynamic Loss Friction loss in suction Pipe Section 1 Pipe Section 2 Pipe Section 2 Pipe Section 3 Pipe Section 4 Total Friction loss in discharge Pipe Section 5 Pipe Section 5 Pipe Section 7 Pipe Section 9 Pipe Section 9 Pipe Section 9 Pipe Section 10 Control Valve Total Summary Safety margin or dyn Suction dynamic losses Total suction head Total required discharge	Not Used Not Used Not Used Not Used ses n pipework Not Used <	$dP_{8} =$ $dP_{1} =$ $dP_{2} =$ $dP_{3} =$ $dP_{3} =$ $dP_{6} =$ $dP_{7} =$ $dP_{8} =$ $dP_{9} =$ $dP_{10} =$ $dP =$ $dP =$ $DHd =$ $dP% =$ $SHd\% =$ $DHd\% =$ $Hd\% =$ $TSHq =$ $TSHq =$ $TDHq =$ $DHr =$	$x HG_{8} / 100$ 1 per fitting x V ₈ ² / 2 / 4 per fitting x V ₈ ² / 2 / 9 Sum of friction losses $dP_{1} + dP_{2} + dP_{3} + dP_{4}$ $dP_{5} + dP_{6} + dP_{7} + dP_{8} + dP_{9} + dP_{10}$ $(1 + dp%) \times SHd$ $(1 + dp%) \times SHd$ $(1 + dp%) \times SHd$ $SHd % + Dhd\%$	0.075 0.075 0.175 Hydraulic Profile Hydraulic Profile Hydraulic Profile Hydraulic Profile at duty start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.2077 Hydraulic Profile at duty start 5.00% 0.000 2.181 2.181 2.181	0.272 0.272 0.639 Hydraulic Profile Hydraulic Profile dydraulic Profile at Standby start 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.244 Hydraulic Profile at Standby start	0.247 0.247 0.580 500+345 500+345 500+345 500+345 500+345 500+345 500+345 1.145 0.0000 0.0000 0.0000 0.0000 0.000000	0.161 0.161 0.379 404+279 404+279 404+279 404+279 404+279 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.921 404+279 5.00% 0.000 2.017 2.017 2.350	0.328 m liq 0.328 m liq 0.328 m liq 0.772 m liq 577+400 577+400 577+400 577+400 577+400 577+400 1,000 m liq 0.000 m liq 0.000 m liq 0.000 m liq 0.217 m liq 0.200 m liq 0.000 m liq 0.0000 m liq 0.0000 m liq 0.0000 m liq 0.0000 m liq 0.0000 m liq 0

6.	NPSH Available (Assuming eleva	ion & velocity head negligible)		at duty start	at Standby start			
	NPSHA Available	NPSHa = 101	.3/Densx1000/9.81+TSHg	12.026	12.676	12.676	12.676	12.676 m liq
7.	Estimated Power Required							
	Assumed efficiency	Peff =		70.00%	70.00%	70.00%	70.00%	70.00%
	Estimated absorbed pump power	Pabs =	<u>ap x DHr x Dens x a</u> Peff	49.49	49.35	45.89	34.05	57.10 kW
8.	Notes						\mathcal{O}	
S:\Pr	ojects\TYR-190531 - Tyr WWTP Upgrade Assistance	V4 Working Docs\[TYR-190531-CALO		izing				V15


Calculation Control of the Pittaneous Contro
--

INLET PUMP STATION

Performance Curves		D Speeds		E	xisting N1	N2	N3			Sv	stem Curve	(Default figures f	rom Pump Sizing	spreadsht)		
Speed				50		0	0				ead [m H2O]	10.66	10.01	10.01	10.01	10.01
Flow multiplier Head Multiplier				N2	2/N1 I2/N1) ²	0	0			D	uty flow [L/s] ead [m H2O]	275 12.84083222	262.5 13.41584342	250	202	288.5
Power Multimplier					12/N1) ³	0	0				Coefficient	2.88375E-05	4.94272E-05	4.94289E-05	4.9437E-05	4.9424E-05
Flow at 50	Head at F 50	Power at 50	Eff at 50	Flow at 0	Head at 0	Power at 0	Eff at #REF!	Flow at 0		Power at 0	Eff at 0	Hydraulic Profile at duty	Hydraulic Profile at	500-345	404+279 (Default	577+400
[L/s] 46.31	[m H2O] 19.808	[kW]	[%] 399.88%	[L/s] 0.00	[m H2O] 0.00	[kW] 0.00	[%] 899.88%	[L/s] 0	[m H2O] 0.00	[kW] 0.00	[%] 899.88%	start System 10.72	Standby start 10,12	System Cuple 10/12	figures from 10.12	10.12
113.82 181.22	18.086 16.4	1 20	019.44% 015.54%	0.00	0.00	0.00	2019.44% 2915.54%	0	0.00	0.00	2019.44% 2915.54%	11.03 11.61	1.63	11.63	10.65 11.63	10.65 11.63
203.28 225.69	15.334 14.684		057.87% 251.07%	0.00	0.00	0.00	3057.87% 3251.07%	0		0.00	3057.87% 3251.07%	11.85 12.13	12.05	12.05	12.05 12.53	12.05 12.53
248.87 274.78	14.185 12.851	1 34	463.15% 464.11%	0.00	0.00	0.00	3463.15% 3464.11%	0	0.00	0.00	3463.15% 3464.11%	12.45 12.84	13.07	13.07 13.74	13.07 13.74	13.07 13.74
274.78 274.78	12.851 12.851	1 34	164.11% 164.11%	0.00	0.00	0.00	3464.11% 3464.11%	0	0.00	0.00	3464.11% 3464.11%	12.84 12.84	13.74	13.74 13.74	13.74 13.74	13.74 13.74
274.78	12.851	1 34	164.11%	0.00 GR4	0.00 APHS ARE	0.00 SHOWN R	3464.11% FLATIVE TO	0 FLOW FR	0.00 OM ONE PUMF	0.00	3464.11%	12.84		13.74	13.74	13.74
25				0.0		enemi							\bigcirc			
													50			
20											((// 1)	 0			
20	٠										\bigcirc		 0			
										4	\searrow		Hydraulic Pr start System	ofile at duty		
15						-	-							ofile at Standby		
								-				~	500+345 Sy			
Head										2			 Hydraulic Pr start 	ofile at duty		
10	-												 Hydraulic Pr start 	ofile at Standby		
											~		500+345			
													 404+279 			
5									$\leq \sim$	>			577+400			
									\sim							
								()	7/							
0		50	100		150		200	$\overline{\bigcirc}$		30	0	350				
								<u>-(</u> ->	\mathbf{i}							
							2	\mathbb{N}								
								\checkmark .								
							\sim	~								
						~ ((>								
						$\langle \rangle$	\searrow									
						X										
					6	\sim	\triangleright									
						\sim	•									
						\searrow										
						\mathbf{r}										
				C	$ \longrightarrow $											
			~	\mathcal{A}))											
			2		9											
			• •	\sim	ク											
			SZ.													
				5												
		\triangleleft	\searrow													
		A	× i													
	\sim	(\frown)	\sim													
		\sim	り))													
	° Q	\searrow	Ľ													
		>														
		-														

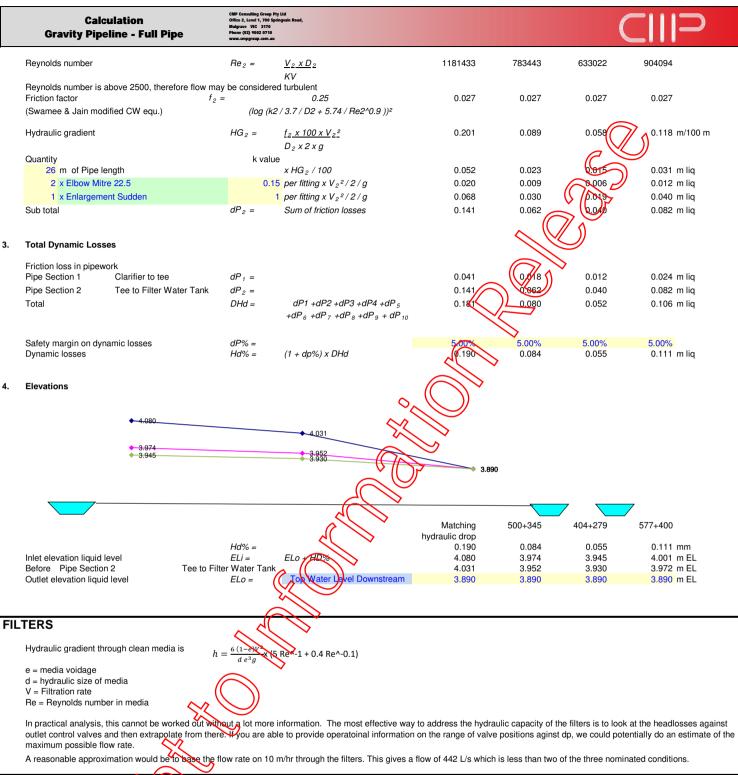
		culation eline - Full Pipe	CMP Consulting Group Office 2, Level 1, 700 S Nulgrave VIC 3170 Phone (03) 9002 0710 www.cmpgroup.com.a	Piy Ltd pringvale Road, u				
IP	E FROM INLE	F WORKS TO ANA	EROBIC RE	ACTOR				
	Design Input	Different cases for differ	ent flows and/or e	elevations but same piping system	Case 1 500+345	Case 2 404+279	Case 3 577+400	Case 3 Hydraulic profile
	Total flow		Q =	Choose units from drop down	500	404	577	— 718 L/s
	10tal now		Qt =	Choose units normatop down	1800.000	1454.400	2077.200	2584.800 m ³ /hr
			qt =	Qt / 3.6	500.000	404.000	577.000	8.000 L/s
					0.500	0.404	0,577	0.718 m³/s
					43.200	34.906	49.853	62.035 ML/d
								<u>/</u>
	Liquid:	?	_				VIN	
	Density of pumped li Density of water	quid	Dens = Dens _{H2O} =		1000 1000	1000		1000 kg/m ³ 1000 kg/m ³
	Kinematic Viscosity	ofliquid	KV =	25 C	8.910E-07	8.910E-07	8.910E-07	8.910E-07 m ² /s
	Rinematic viscosity		KVcst =	KV x 1E6	0.891	0.891	0.891	0.891 cSt
	Dynamic Condition	6					\diamond	
	-				_	\sim		
	Pipe Section 1 Pipe size	Outlet from inlet works 960 OD MSCL	5		500+345 DN960	404-279 DN960		Hydraulic profile DN960 mm
	Pipe size Inside Diameter	300 OD MOOL	d 1 =	Use accurate internal diamete		912	DN960 912	912 mm
				from tables				
			D 1 =	d 1 / 1000	0.912	✓0.912	0.912	0.912 m
	Area		A 1 =	$\Pi / 4 \times D_{1}^{2}$	1,653	0.653	0.653	0.653 m ²
	Niconale a statistical	er tetel fle	~	Defeutities and Device the	CL .	~		
	Number of streams f		S ₁ =	Default from Design Inputs	1808,000	1	2077 200	1 2584 800 m ³ /br
	Flow for this pipe see Additional flows from			Default from Design Inputs Use for multiple stations, dosig	1800,000	1454.400	2077.200	2584.800 m ³ /hr m3/hr
				points etc				
	Total flow for this pip	e section	Q ₁ =	\sim	1800.000	1454.400	2077.200	2584.800 m ³ /h
			<i>q</i> ₁ =	Q ₁ /3.6	500.000	404.000	577.000	718.000 L/s
	Velocity		V 1 =		0.765	0.618	0.883	1.099 m/sec
				A 1 x 3600	No.			
	Pipe Wall Roughnes	S	$k_1 =$	See attached workshee		3	3	3 mm
					0.003	0.003	0.003	0.003 m
	Reynolds number		Re 1 =	$V_1 \times D_1$	783443	633022	904094	1125025
	Deurselde aussehen is	above 2500, therefore flow		KV				
	Friction factor	,	$f_1 =$		0.027	0.027	0.027	0.027
	(Swamee & Jain mo			1/3.7/DI+5.74 Re1^0.9))2				
		• /						
	Hydraulic gradient		$HG_1 =$	$(f_1, x \sqrt{80} \times V_1)$	0.089	0.058	0.118	0.182 m/100
	0		1	20. x 2 x g				
	Qty 7 m of pipe le	enath	k valı	XHG, HOO	0.006	0.004	0.008	0.013 m liq
	1 x Inlet Shar	•	. 26	5 per fitting x $V_1^2/2/g$	0.015	0.010	0.020	0.031 m liq
	1 x Enlargem			1 per fitting x V ₁ ² /2/g	0.030	0.019	0.020	0.062 m liq
	Sub total		dP 1 =	Sum of friction losses	0.051	0.033	0.068	0.105 m liq
				>	0.001	0.000	0.000	0.100 11119
	Total Dynamic Los	ses	\bigcirc		500+345 4	04+279 57	7+400 H	ydraulic profile
	Friction loss in pipev	vork	\sim		4 4			,
	Pipe Section 1	Outlet from inlet works	$dP_1 =$		0.051	0.033	0.068	0.105 m liq
	Total	~ ~ ~	BHd =	dP1 +dP2 +dP3 +dP4 +dP ₅	0.051	0.033	0.068	0.105 m liq
		X		$+dP_6 + dP_7 + dP_8 + dP_9 + dP_1$	0			
	Safety margin on dy		ク dP% =		E 000/	E 000/	E 000/	E 009/
	Dynamic losses	ICITIL IUDAES	aP% = Hd% =	(1 + dp%) x DHd	5.00% 0.054	5.00% 0.035	5.00% 0.071	<mark>5.00%</mark> 0.110 m liq
				(
	Elevations	* 7.991 * 7.974 * 7.955						
					7.920			
							_	
					500+345	404+279	577+400	Hydraulic profile

Gravity Pipe	culation eline - Full Pipe	CHIP Consulting Group Office 2, Level 1, 700 : Mulgrave VIC 3170 Phone (03) 9002 0710 www.cmpgroup.com.a	Springvale Road,				
Inlet elevation liquid Outlet elevation liquid		ELi = ELo =	ELo + HD% Top Water Level Downstream	7.974 7.920	7.955 7.920	7.991 7.920	8.030 m EL 7.920 m EL
ANAEROBIC REA	CTOR INLET WEI	R				($\overline{\begin{subarray}{c} \hline \hline$
1. Design Input	Different cases			Case 1 500+345	Case 2 404+279	Case 3 577+400	Case 4
Flow per clarifier		Q = Qt = qt = qts =	Qt / 3.6 qt / 1000	500 1800.000 500.000 0.500 43.200	404 1454.400 404.000 0.404 34.906	577 2077 200 L 517 000 0.57 49.853	780 L/s 2808.000 m³/hr 780.000 L/s 0.780 m³/s 67.392 ML/d
Hydraulic drop						8	0mm
2. Dynamic Condition	s					\geqslant	
Weir width Downstream TWL Upstream TWL	Flooded weir - CMP F	ooded Weir Calc	ulator used	900 7.840 7.870 30	7.840 7.660 20	900 7.840 7.880 40	900 mm 7.840 m 7.920 m 80 mm
OXIDATION DITCI	H OUTLET WEIR			-	>		
1. Design Input	Different cases		0,	hydraulic dropin	Case 2 500+345	Case 3 404+279	Case 4 577+400
Flow per clarifier		Q = Qt = qt = qts =	Qt / 3.6 qt / 1000	340 1224.000 340.000 0.340 29.376	845 3042.000 845.000 0.845 73.008	683 2458.800 683.000 0.683 59.011	977 L/s 3517.200 m³/hr 977.000 L/s 0.977 m³/s 84.413 ML/d
2. Dynamic Condition	s						
Weir width		<i>b</i> =	qts	5084 5.084	5084 5.084	5084 5.084	5084 mm 5.084 m
Height over weir is		$h = (\frac{1}{0.595})$	$\frac{413}{\times 2/3 \times \sqrt{2g} \times (b = 6003)}^{2/3} + 0.001$	0.114 114	0.209 209	0.181 181	0.230 m 230 mm
TWL in Oxidation Dit Weir in down position			L C	7.560 7.080 480	7.560 7.080 480	7.560 7.080 480	7.560 m 7.080 m 480 mm
PIPE FROM OXID	ATION DITCH TO						
			JOR DISTRIBUTOR				
1. Design Input	Different cases for diffe		DOR DISTRIBUTOR	Case 1 500+345	Case 2 404+279	Case 3 577+400	Case 3 Hydraulic profile
1. Design Input	Different cases for diffe		\searrow				
2 .	7	rent flows and/or $Q_t = Q_t$	Choose units from drop down	500+345 845 3042.000 845.000 0.845	404+279 683 2458.800 683.000 0.683	577+400 F 977 - 3517.200 977.000 0.977	Hydraulic profile 1460 L/s 5256.000 m ³ /hr 1460.000 L/s 1.460 m ³ /s
Total flow	quid	rent flows and/or Qt = qt = Dens = Dens = Dens + Reo = KV =	20 C	500+345 845 3042.000 845.000 0.845 73.008 1000 1000 8.910E-07	404+279 683 2458.800 683.000 0.683 59.011 1000 1000 8.910E-07	577+400 977 3517.200 977.000 0.977 84.413 1000 1000 8.910E-07	Hydraulic profile 1460 L/S 5256.000 m ³ /hr 1460.000 L/S 1.460 m ³ /s 126.144 ML/d 1000 kg/m ³ 1000 kg/m ³ 8.910E-07 m ² /s
Total flow Liquid: Density of pumped li Density of water Kinematic Viscosity of	quid of liquid	rent flows and e_{t}	Choose units from drop down Qt / 3.6	500+345 845 3042.000 845.000 0.845 73.008	404+279 683 2458.800 683.000 0.683 59.011 1000 1000	577+400 977 3517.200 977.000 0.977 84.413 1000 1000	Hydraulic profile 1460 L/S 5256.000 m ³ /hr 1460.000 L/S 1.460 m ³ /s 126.144 ML/d 1000 kg/m ³ 1000 kg/m ³
Total flow Liquid: Density of pumped lip Density of water Kinematic Viscosity of 2. Dynamic Condition Pipe Section 1	quid of liquid	rent flows and/or Qt = qt = Dens = Dens = Dens + Reo = KV =	20 C	500+345 845 3042.000 845.000 0.845 73.008 1000 8.910E-07 0.891 500+345	404+279 683 2458.800 683.000 0.683 59.011 1000 8.910E-07 0.891 404+279	577+400 977 3517.200 977.000 0.977 84.413 1000 8.910E-07 0.891 577+400	Hydraulic profile 1460 L/S 5256.000 m ³ /hr 1460.000 L/S 1.460 m ³ /s 126.144 ML/d 1000 kg/m ³ 8.910E-07 m ² /s 0.891 cSt Hydraulic profile
Total flow Liquid: Density of pumped li Density of water Kinematic Viscosity of 2. Dynamic Condition	quid of liquid	rent flows and/or Qt = qt = Dens = Dens = Dens + Reo = KV =	20 C	500+345 845 3042.000 845.000 0.845 73.008 1000 1000 8.910E-07 0.891	404+279 683 2458.800 683.000 0.683 59.011 1000 1000 8.910E-07 0.891	577+400 977 3517.200 977.000 977.000 0.977 84.413 1000 1000 1000 8.910E-07 0.891	Hydraulic profile 1460 L/S 5256.000 m ³ /hr 1460.000 L/S 1.460 m ³ /s 126.144 ML/d 1000 kg/m ³ 1000 kg/m ³ 8.910E-07 m ² /s 0.891 cSt
Total flow Liquid: Density of pumped lin Density of water Kinematic Viscosity of 2. Dynamic Condition Pipe Section 1	quid of liquid	rent flows and/or Qt = dt = Dens = $Dens_{H2O} =$ KV = KV = KV =	Choose units from drop down Qt / 3.6 20 C KV x 1E6	500+345 845 3042.000 845.000 0.845 73.008 1000 1000 8.910E-07 0.891 500+345 DN960	404+279 683 2458.800 683.000 0.683 59.011 1000 1000 8.910E-07 0.891 404+279 DN960	577+400 977 3517.200 977.000 0.977 84.413 1000 8.910E-07 0.891 577+400 DN960	Hydraulic profile 1460 L/S 5256.000 m ³ /hr 1460.000 L/s 1.460 m ³ /s 126.144 ML/d 1000 kg/m ³ 1000 kg/m ³ 8.910E-07 m ² /s 0.891 cSt Hydraulic profile DN960 mm
Total flow Liquid: Density of pumped lip Density of water Kinematic Viscosity of 2. Dynamic Condition Pipe Section 1 Pipe size Inside Diameter	quid of liquid	rent flows and/or Qt = dt = Dens = Dens + Bzo = KV = KV = KVcst = $d_1 =$ $D_1 =$	Choose units from drop down Qt/3.6 20 C $KV \times 1E6$ Use accurate internal diameter from tables $d_1/1000$	500+345 845 3042.000 845.000 0.845 73.008 1000 1000 8.910E-07 0.891 500+345 DN960 912 0.912	404+279 683 2458.800 683.000 0.683 59.011 1000 1000 8.910E-07 0.891 404+279 DN960 912 0.912	577+400 977 3517.200 977.000 0.977 84.413 1000 1000 8.910E-07 0.891 577+400 DN960 912 0.912	Hydraulic profile 1460 L/S 5256.000 m³/hr 1460.000 L/S 1.460 m³/s 126.144 ML/d 1000 kg/m³ 1000 kg/m³ 1000 kg/m³ 8.910E-07 m²/s 0.891 cSt Hydraulic profile DN960 mm 912 mm 0.912 m
Total flow Liquid: Density of pumped lip Density of water Kinematic Viscosity of 2. Dynamic Condition Pipe Section 1 Pipe size Inside Diameter Area	quid of liquid meel or total flow ction	rent flows and e_{i} $Q_{t} =$ $d_{t} =$ Dens = $Dens +_{I2O} =$ KV = KVcst = $d_{1} =$ $D_{1} =$ $A_{1} =$	Choose units from drop down Qt / 3.6 20 C $KV \times 1E6$ Use accurate internal diameter from tables $d_1 / 1000$ $II / 4 \times D_1^2$	500+345 845 3042.000 845.000 0.845 73.008 1000 1000 8.910E-07 0.891 500+345 DN960 912 0.912	404+279 683 2458.800 683.000 0.683 59.011 1000 1000 8.910E-07 0.891 404+279 DN960 912 0.912 0.653	577+400 977 3517.200 977.000 0.977 84.413 1000 8.910E-07 0.891 577+400 DN960 912 0.912 0.653	Hydraulic profile 1460 L/S 5256.000 m ³ /hr 1460.000 L/S 1.460 m ³ /s 126.144 ML/d 1000 kg/m ³ 1000 kg/m ³ 1000 kg/m ³ 8.910E-07 m ² /s 0.891 cSt Hydraulic profile DN960 mm 912 m 0.912 m 0.653 m ²

PIPE FROM MIXED LIQUOR DISTRIBUTOR TO CLARIFIER

1. Design Input

Case 1	Case 2	Case 3	Case 4
--------	--------	--------	--------


	lculation Deline - Full Pipe	CMP Consulting Group Office 2, Level 1, 700 : Mulgrave VIC 3170 Phone (03) 9002 0710 www.cmpgroup.com.a	Springvale Road,					
	Different cases for diffe	erent flows and/or e	elevations but same piping system	Matching hydraulic drop in drawings	500+345	404+279	577+400	
Total flow		Q =	Choose units from drop down	1034	845	701	977	L/s
		Qt =	01/0.0	3722.400	3042.000	2523.600	3517.200	
		qt =	Qt / 3.6	1034.000 1.034	845.000 0.845	701.000	977.000	
				89.338	73.008	60.566	84.413	
						\mathcal{C}		
Liquid:	?	_)	
Density of pumped Density of water	liquid	Dens = Dens _{H2O} =		1000 1000	1000 1000			kg/m³ kg/m³
Kinematic Viscosity	of liquid	KV =		8.910E-07	8.910E-07	S9DE T	8.910E-07	m²/s
		KVcst =	KV x 1E6	0.891	0.891	0.891	0.891	cSt
Dynamic Conditio	ns					\searrow		
Pipe Section 1 Pipe size	Mixed Liquor Distribut MSCL	tor to Clarifer		Case 1 DN960	Case 2	Case 3 DN960	Case 4 DN960	mm
Inside Diameter	MOOL	d 1 =	Use accurate internal diameter		912	912	912	
		D	from tables	0.010		0.010	0.010	~
Area		$D_1 = A_1 =$	d ₁ / 1000 П / 4 x D ₁ ²	0.912 0.653	0.912	0.912 0.653	0.912 0.653	
		·						
Number of streams		$S_1 =$	Default from Design Inputs	2	2	2	2	
Flow for this pipe so Additional flows fro			Default from Design Inputs Use for multiple stations, dosing	1861.200	1521.000	1261.800	1758.600	m ³ /hr m3/hr
		0	points etc					
Total flow for this p	pe section	Q ₁ =	0 /26	1861.200	1521.000 422.500	1261.800 350.500	1758.600 488.500	
Velocity		$q_1 = V_1 =$	$Q_1/3.6$ Q_1	0.791	422.500 0.647	350.500 0.537	488.500 0.748	
volocity		• 1 -	A ₁ x 3600		0.017	0.007	0.710	11,000
Pipe Wall Roughne	SS	$k_1 =$	See attached worksheet	3	3	3		mm
			\sim (0.003	0.003	0.003	0.003	m
Reynolds number		Re 1 =	$\frac{V_1 \times D_1}{KV}$	810080	662010	549194	765424	
Reynolds number is Friction factor	above 2500, therefore flow	w may be consider f1 =	ed turbulent	0.027	0.027	0.027	0.027	
(Swamee & Jain m	odified CW equ.)		(1 / 3.7 / D1 4 5 74 / Re1 0.9)) ²	0.027	0.027	0.027	0.027	
Hydraulic gradient		HG1 =	t x land 2	0.095	0.063	0.044	0.085	m/100 ı
riyuradile gradient		1101 -	$D_1 \times x g$	0.000	0.000	0.044	0.005	11,1001
Qty		k val						
35.5 m of pipe	•		UR HG 1 / 100	0.034	0.023	0.016	0.030	
1 x Inlet Sha	rp Edged itre 90 4 piece		5 per fitting x $V_1^2/2/g$.3 per fitting x $V_1^2/2/g$	0.016 0.019	0.011 0.013	0.007 0.009	0.014 0.017	•
	losses through clarifier entr		Q=0.62 A Sqrt(2gh)	0.273	0.183	0.126	0.017	•
Sub total		dP 1 ≥	Sum of friction losses	0.342	0.229	0.157	0.306	
			\diamond					
Total Dynamic Los Friction loss in pipe		(())						
Pipe Section 1	Mixed Liquor Distrikuto			0.342	0.229	0.157	0.306	
Total	4	DHd =	$dP1 + dP2 + dP3 + dP4 + dP_5$ + $dP_6 + dP_7 + dP_8 + dP_9 + dP_{10}$	0.342	0.229	0.157	0.306	m liq
	\sim	Ŭ	0 / 0 3 /0					
Safety margin on d	ynamic losses	√ dP% =	(4 4 6() =	5.00%	5.00%	5.00%	5.00%	
Dynamic losses		Hd% =	(1 + dp%) x DHd	0.359	0.240	0.165	0.321	m liq
	\sim							
Elevations								
	or MA							
<i>[</i>								
	4.950							
	$\langle \nabla \rangle$			4.710				
		Hd% -		0 350	0 240	0 165	0 321	mm
Inlet elevation liquid Outlet elevation liquid		Hd% = ELi = ELo =	ELo + HD% Top Water Level Downstream	0.359 5.069 4.710	0.240 4.950 4.710	0.165 4.875 4.710	0.321 5.031 <mark>4.710</mark>	m EL

Calculation Gravity Pipeline - Full Pipe CMP Consulting Group Pty Ltd Office 2, Level 1, 700 Springvale Road, Mulgrave VIC 3170 Phone (03) 9002 0710 www.cmggroup.com.au

PIPE FROM CLARIFIER OUTLETS TO FILTER FEED TANK

Design Input	Different cases for different	nt flows and/or e	levations but same piping system	Case 1 Matching hydraulic drop in drawings	Case 2 500+345	Case 3 404+279	Case 3 577+400
Total flow		Q =	Choose units from drop down	754	500		577 L/s
Total now		Q = Qt =	Choose units nom drop down	2714.400	1800.000	1454.400	2077.200 m ³ /hr
		qt =	Qt / 3.6	754.000	500.000	404.000	577.000 L/s
		,		0.754	0.500		0.577 m³/s
				65.146	43.200	() \$4.906-	49.853 ML/d
Liquid:	?				. ((70	
Density of pumped li	quid	Dens =		1000	1800	1000	1000 kg/m ³
Density of water		Dens _{H2O} =		1000	1090	1000	1000 kg/m ³
Kinematic Viscosity	of liquid	KV =		8.910E-07	8.910E-07	8.910E-07	8.910E-07 m ² /s
		KVcst =	KV x 1E6	0.891	(0.891	0.891	0.891 cSt
				1			
Dynamic Condition	5						
Pipe Section 1	Clarifier to tee			Matching	500+345	404+279	577+400
Fipe Section 1	Clarmer to tee			hydraulic drop in	00+343	404+275	377+400
Pipe size				Prise	DN960	DN960	DN960 mm
Inside Diameter		d 1 =	Use accurate internal diameter from tables	ر ⁹¹²	> 912	912	912 mm
		D 1 =	$d_1 / 1000$	C PR	0.912	0.912	0.912 m
Area		$A_1 =$	$\Pi / 4 \times D_{1}^{2}$	01643	0.653	0.653	0.653 m ²
			$11/4 \times D_1^{-1}$		0.000	0.000	0.000 111
Number of streams f	or total flow	S ₁ =	Default from Design Inputs	2	2	2	2
Flow for this pipe see	tion		Default from Design Inputs	1957.200	900.000	727.200	1038.600 m³/hr
Additional flows from	another source		Use for multiple stations, dosing				m3/hr
Table for the shire of		0	points etc	1057.000	000.000	707.000	1000.000
Total flow for this pip	e section	Q 1 =	$\langle \rangle / \rangle$	1357.200	900.000	727.200	1038.600 m ³ /h
		<i>q</i> ₁ =	$Q_1/3.6$	377.000	250.000	202.000	288.500 L/s
Velocity		$V_1 =$	$\frac{Q_1}{A_1 \times 3600}$	0.577	0.383	0.309	0.442 m/sec
	_	le .		0	0	0	0
Pipe Wall Roughnes	S	k 1 =	See attached worksheet	3	3	3	3 mm
Pipe Wall Roughnes	S	k 1 =		3 0.003	3 0.003	<mark>3</mark> 0.003	<mark>3</mark> mm 0.003 m
Pipe Wall Roughnes Reynolds number	S	k 1 = Re 1 =					
Reynolds number		Re ₁ =	See attached worksheet	0.003	0.003	0.003	0.003 m
Reynolds number Reynolds number is	above 2500, therefore flow n	$Re_1 =$	See attached worksheet	0.003 590716	0.003 391722	0.003 316511	0.003 m 452047
Reynolds number Reynolds number is Friction factor	above 2500, therefore flow n f	$Re_1 =$ hay be considerent =	See attached worksheet	0.003	0.003	0.003	0.003 m
Reynolds number Reynolds number is	above 2500, therefore flow n f	$Re_1 =$ hay be considerent =	See attached worksheet	0.003 590716	0.003 391722	0.003 316511	0.003 m 452047
Reynolds number Reynolds number is Friction factor	above 2500, therefore flow n f	$Re_1 =$ hay be considerent =	See attached worksheet	0.003 590716	0.003 391722	0.003 316511	0.003 m 452047
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod	above 2500, therefore flow n f	Re ₁ = nay be considere 1 = (log (k	See attached worksheet $\frac{V_{1} \times D}{KV}$ worksheet $\frac{V_{2} \times D}{KV}$ worksheet $\frac{V_{2} \times D}{KV}$ $\frac{V_{2} \times D}{KV}$	0.003 590716 0.027	0.003 391722 0.027	0.003 316511 0.027	0.003 m 452047 0.027
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty	above 2500, therefore flow n <i>f</i> dified CW equ.)	Re ₁ = nay be considere 1 = (log (k	See attached worksheet $\frac{V_1 \times D_1}{KV}$ $\frac{V_1 \times D_1}{KV}$ $\frac{V_2 \times D_1}{KV}$ $\frac{V_1 \times V_1}{KV}$ $\frac{V_1 \times V_1}{KV}$	0.003 590716 0.027 0.051	0.003 391722 0.027 0.022	0.003 316511 0.027 0.015	0.003 m 452047 0.027 0.030 m/100 m
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe la	above 2500, therefore flow n <i>f</i> dified CW equ.) ength	$Re_{1} =$ $r_{1} =$ $(log (k)$ $HG_{1} =$ $Rvalu$	See attached workstreet $\frac{V_1 \times D_1}{KV}$ $\frac{V_1 \times D_1}{KV}$ $\frac{V_2 \times D_1}{KV}$ $\frac{V_1 \times D_1}{KV}$ $\frac{V_2 \times D_1}{KV}$ $\frac{V_1 \times D_1}{KV}$	0.003 590716 0.027 0.051 0.004	0.003 391722 0.027 0.022 0.022	0.003 316511 0.027 0.015 0.001	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 x Inlet Shar	above 2500, therefore flow n f dified CW equ.) ength o Edged	$Re_{1} =$ $r_{1} =$ $(log (k) + HG_{1} =$ $Re_{1} =$	See attached workstreet $V_1 \times D_1$, KV aturbulent 0.25 $1.33 \times (D1 + 5.74 / Re1^{0.9}))^2$ $1.5100 \times V_1^2$ $D_1 \times 2 \times g$ $x HG_1 / 100$ S per fitting $x V_1^2 / 2 / g$	0.003 590716 0.027 0.051 0.004 0.008	0.003 391722 0.027 0.022 0.002 0.002 0.004	0.003 316511 0.027 0.015 0.001 0.002	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe la 1 x Inlet Shar 1 x Bend Med	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90	$Re_{1} =$ $r_{1} =$ $(log (k) + HG_{1} =$ $Re_{1} =$	See attached workstreet $V_1 \times D_1$, KV aturbulent 0.25 $1.33 \times (D1 + 5.74 / Re1^{0.9}))^2$ $1.5100 \times V_1^2$ $D_1 \times 2 \times g$ $2 \times HG_1 / 100$ S per fitting $\times V_1^2 / 2 / g$ 5 per fitting $\times V_1^2 / 2 / g$	0.003 590716 0.027 0.051 0.004 0.008 0.013	0.003 391722 0.027 0.022 0.002 0.004 0.006	0.003 316511 0.027 0.015 0.001 0.002 0.004	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 x Inlet Shar	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90	$Re_{1} =$ hay be considered $\int_{1}^{1} = (log (k + HG_{1}) = (lo$	See attached workstreet $V_1 \times D_1$, KV attributent 0.25 $1.33 \times (D1 + 5.74 / Re1^{0.9}))^2$ $1.5100 \times V_1^2$ $D_1 \times 2 \times g$ $2 \times HG_1 / 100$ S per fitting $\times V_1^2 / 2 / g$ S per fitting $\times V_1^2 / 2 / g$ 3 per fitting $\times V_1^2 / 2 / g$	0.003 590716 0.027 0.051 0.004 0.008	0.003 391722 0.027 0.022 0.002 0.002 0.004	0.003 316511 0.027 0.015 0.001 0.002	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe la 1 x Inlet Shar 1 x Bend Med	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90	$Re_{1} =$ hay be considered $\int_{1}^{1} = (log (k + HG_{1}) = (lo$	See attached workstreet $V_1 \times D_1$, KV aturbulent 0.25 $1.33 \times (D1 + 5.74 / Re1^{0.9}))^2$ $1.5100 \times V_1^2$ $D_1 \times 2 \times g$ $2 \times HG_1 / 100$ S per fitting $\times V_1^2 / 2 / g$ 5 per fitting $\times V_1^2 / 2 / g$	0.003 590716 0.027 0.051 0.004 0.008 0.013	0.003 391722 0.027 0.022 0.002 0.004 0.006	0.003 316511 0.027 0.015 0.001 0.002 0.004	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 x Inlet Shar 1 x Bend Med 1 x Elbow Mit	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45	$Re_{1} =$ hay be considered $\int_{1}^{1} = (log (k + HG_{1}) = (lo$	See attached workstreet $V_1 \times D_1$, KV attributent 0.25 $1.33 \times (D1 + 5.74 / Re1^{0.9}))^2$ $1.5100 \times V_1^2$ $D_1 \times 2 \times g$ $2 \times HG_1 / 100$ S per fitting $\times V_1^2 / 2 / g$ S per fitting $\times V_1^2 / 2 / g$ 3 per fitting $\times V_1^2 / 2 / g$	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 × Inlet Shar 1 × Elbow Mit 1 × Elbow Mit 1 × Tee Sub total	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line	$Re_{1} =$ hay be considered $r = (log (k + HG_{1}) = (log (k + $	See attached workstreet $V_1 \times D_1$, KV R	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.018	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.003 m liq 0.006 m liq 0.024 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe la 1 x Inlet Shar 1 x Bend Med 1 x Elbow Mit 1 x Tee	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45	$Re_{1} =$ hay be considered $r = (log (k + HG_{1}) = (log (k + $	See attached workstreet $V_1 \times D_1$, KV R	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 Matching	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.003 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 × Inlet Shar 1 × Elbow Mit 1 × Elbow Mit 1 × Tee Sub total	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line	$Re_{1} =$ hay be considered $r = (log (k + HG_{1}) = (log (k + $	See attached workstreet $V_1 \times D_1$, KV R	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.018	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.003 m liq 0.006 m liq 0.024 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 × Inlet Shar 1 × Bend Med 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2 Pipe size	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line	$Re_{1} =$ hay be considered $r = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D$, KV an urbulent 825 $1 \times 2 \times (D1 + 5.74 / Re1^{0.9}))^2$ $1 \times 100 \times V_1^2$ $D_1 \times 2 \times g$ $x HG_1 / 100$ 5 per fitting $x V_1^2 / 2 / g$ 5 per fitting $x V_1^2 / 2 / g$ 5 per fitting $x V_1^2 / 2 / g$ 6 per fitting $x V_1^2 / 2 / g$ Sum of friction losses	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 Matching hydraulic drop in drawings DN960	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.018 500+345	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 × Inlet Shar 1 × Bend Med 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank	$Re_{1} =$ hay be considered $r = (log (k + HG_{1}) = (log (k + $	See attached worksheet $V_1 \times D$, KV KV $V_2 \times D^2$ $V_3 \times D^2 + 5.74 / \text{Re} 1^{0.9}))^2$ $V_3 \times D^2 + 5.7$	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 Matching hydraulic drop in drawings	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.004 0.018 500+345	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.003 m liq 0.006 m liq 0.024 m liq
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 × Inlet Shar 1 × Bend Med 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2 Pipe size	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank	$Re_{1} =$ $r = (log (k) + HG_{1}) = (log (k) + HG$	See attached worksheet $V_1 \times D_1$ KV	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 Matching hydraulic drop in drawings DN960 912	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.018 500+345 DN960 912	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 x Inlet Shar 1 x Bend Mec 1 x Elbow Mit 1 x Tee Sub total Pipe Section 2 Pipe size Inside Diameter	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 hydraulic drop in drawings DN960 912	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.018 500+345 500+345	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912 0.912	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 mm 0.912 m
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 × Inlet Shar 1 × Bend Med 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2 Pipe size	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank	$Re_{1} =$ $r = (log (k) + HG_{1}) = (log (k) + HG$	See attached worksheet $V_1 \times D_1$ KV	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 Matching hydraulic drop in drawings DN960 912	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.008 500+345 500+345	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 mm
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 x Inlet Shar 1 x Bend Mec 1 x Elbow Mit 1 x Tee Sub total Pipe Section 2 Pipe size Inside Diameter	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line Tee to Filter Over Tank Pipe size and material	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 hydraulic drop in drawings DN960 912	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.018 500+345 500+345	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912 0.912	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 mm 0.912 m
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 × Inlet Shar 1 × Bend Med 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank Pipe size and metrical Pipe size and metrical	$Re_{1} =$ $ray be considered r = (log (k) + HG_{1}) = (log (k) + HG_{$	See attached worksheet $V_1 \times D$, KV attached worksheet $V_2 \times D$, KV attached worksheet $V_2 \times D$, $V_1 \times D$, $V_2 \times D$, $V_1 \times D + 5.74 / Re1^{0.9}$)) ² $V_2 \times D + 5.74 / Re1^{0.9}$)) ² $V_1 \times D \times V_1^2$ $D_1 \times 2 \times g$ $KHG_1 / 100$ $Per fitting \times V_1^2 / 2 / g$ $S per fitting X V_1^2 / 2 / g$ $S per fitting X V_1^2 / 2 / g$ S um of friction losses Use accurate internal diameter from tables $d_2 / 1000$ $II / 4 \times D_2^2$	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 hydraulic drop in drawings DN960 912 0.653	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.008 500+345 500+345 DN960 912 0.912 0.653	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912 0.912 0.653	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 mm 0.653 m ²
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 × Inlet Shar 1 × Bend Mec 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area	above 2500, therefore flow n f dified CW equ.) ength b Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank Pipe size and metrical Pipe size and metrical	$Re_{1} =$ hay be considered $\int_{1}^{1} = (log (k) + HG_{1}) = (log (k)$	See attached worksheet $V_1 \times D$, KV KV $V_2 \times D^2$, $V_1 \times D_1 + 5.74 / Re1^{0.9})^2$ $T_2 \times 100 \times V_1^2$ $D_1 \times 2 \times g$ $x HG_1 / 100$ B per fitting $x V_1^2 / 2 / g$ 5 per fitting $x V_1^2 / 2 / g$ 6 per fitting $x V_1^2 / 2 / g$ Sum of friction losses Use accurate internal diameter from tables $d_2 / 1000$ $II / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 hydraulic drop in drawings DN960 912 0.653	0.003 391722 0.027 0.022 0.002 0.004 0.006 0.002 0.004 0.008 500+345 500+345 500+345 500+345 200960 912 0.912 0.653	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912 0.912 0.653	0.003 m 452047 0.027 0.030 m/100 m 0.002 m liq 0.005 m liq 0.007 m liq 0.003 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 m 0.653 m ²
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 x Inlet Shar 1 x Bend Mec 1 x Elbow Mit 1 x Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area Number of streams of Flow for this pupp size Additional flows tonest	above 2500, therefore flow n f dified CW equ.) ength o Edged ium Radius 90 re 45 - in line Tee to Filter V ser Tank Pipe size and material Pipe size and material	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV wurbulent 825 $1 \times 2 \times (D1 + 5.74 / Re1^{0.9}))^2$ $1 \times 100 \times V_1^2$ $D_1 \times 2 \times g$ $2 \times HG_1 / 100$ $5 \text{ per fitting } V_1^2 / 2 / g$ $5 \text{ per fitting } V_$	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 0.041 hydraulic drop in drawings DN960 912 0.912 0.653	0.003 391722 0.027 0.022 0.004 0.004 0.006 0.002 0.004 0.018 500+345 500+345 DN960 912 0.912 0.653 11800.000	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 4004+279 DN960 912 0.653 1 1454.400	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.005 m liq 0.003 m liq 0.003 m liq 0.006 m liq 0.024 m liq 577+400 577+400 DN960 912 mm 0.653 m ² 0.653 m ²
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 × Inlet Shar 1 × Bend Med 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area	above 2500, therefore flow n f dified CW equ.) ength o Edged ium Radius 90 re 45 - in line Tee to Filter V ser Tank Pipe size and material Pipe size and material	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 0.041 hydraulic drop in drawings DN960 912 0.912 0.653 1 2714.400	0.003 391722 0.027 0.022 0.004 0.004 0.006 0.002 0.004 0.008 0.004 0.018 500+345 500+345 500+345 200912 0.912 0.653 11800.000	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 0.012 404+279 0.912 0.653 1 1454.400	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.007 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 mm 0.653 m ² 0.912 m 0.653 m ² 2077.200 m ³ /hr
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 x Inlet Shar 1 x Bend Mec 1 x Elbow Mit 1 x Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area Number of streams of Flow for this pupp size Additional flows for this pip	above 2500, therefore flow n f dified CW equ.) ength o Edged ium Radius 90 re 45 - in line Tee to Filter V ser Tank Pipe size and material Pipe size and material	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV $V_1 \times D_1$ KV $V_1 \times D_1$ $V_2 \times D_1 + 5.74 / Re1^{0.9}))^2$ $T_2 \times 100 \times V_1^2$ $D_1 \times 2 \times g$ $X + IG_1 / 100$ $P \text{ per fitting } X \vee 1^2 / 2 / g$ $S \text{ per fitting } X \vee 1^2 / 2 / g$ $G \text{ per fitting } X \vee 1^2 / 2 / g$ S un of friction losses Use accurate internal diameter from tables $d_2 / 1000$ $II / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2 / 3.6$	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 0.041 0.041 hydraulic drop in drawings DN960 912 0.912 0.653 1 2714.400 754.000	0.003 391722 0.027 0.022 0.004 0.004 0.006 0.002 0.004 0.004 0.018 500+345 500+345 500+345 200912 0.653 1800.000	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912 0.912 0.653 1 1454.400 404.000	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.007 m liq 0.007 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 577+400 0.021 m 0.653 m ² 0.912 m 0.653 m ² 2077.200 m ³ /h 577.000 L/s
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 x Inlet Shar 1 x Bend Mec 1 x Elbow Mit 1 x Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area Number of streams of Flow for this pupp size Additional flows tonest	above 2500, therefore flow n f dified CW equ.) ength o Edged ium Radius 90 re 45 - in line Tee to Filter V ser Tank Pipe size and material Pipe size and material	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV $V_1 \times D_1$ KV $V_1 \times D_1$ KV KV KV KV KV KV KV KV KV KV $V_1 \times D_1 + 5.74 / Re1^{0.9}$)) ² $\frac{1}{12} \times 2$ $\frac{100 \times V_1^2}{2}$ $D_1 \times 2 \times g$ $X + IG_1 / 100$ F F per fitting $X V_1^2 / 2/g$ S per fitting $X V_1^2 / 2/g$ S per fitting $X V_1^2 / 2/g$ S un of friction losses $\frac{1}{12} \sqrt{1000}$ $II / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2 / 3.6$ Q_2	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 0.041 hydraulic drop in drawings DN960 912 0.912 0.653 1 2714.400	0.003 391722 0.027 0.022 0.004 0.004 0.006 0.002 0.004 0.008 0.004 0.018 500+345 500+345 500+345 200912 0.912 0.653 11800.000	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 0.012 404+279 0.912 0.653 1 1454.400	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.007 m liq 0.003 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 mm 0.653 m ² 0.912 m 0.653 m ² 2077.200 m ³ /hr
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Qty 8 m of pipe le 1 × Inlet Shar 1 × Bend Mec 1 × Elbow Mit 1 × Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area Number of streams f Flow for this pipe size Arotal flows for this pipe Velocity	above 2500, therefore flow n f dified CW equ.) ength o Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank Pipe size and material Pipe size and material rotat flow another source e section	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV $V_1 \times D_1$ KV $V_1 \times D_1$ KV KV KV KV KV KV KV KV KV KV $V_1 \times D_1 + 5.74 / Re1^{0.9}$)) ² $T_1 \times 100 \times V_1^2$ $D_1 \times 2 \times g$ $X + IG_1 / 100$ F F per fitting $X V_1^2 / 2 / g$ S per fitting $X V_1^2 / 2 / g$ S per fitting $X V_1^2 / 2 / g$ S per fitting $X V_1^2 / 2 / g$ S um of friction losses $V_1^2 / 2 / g$ S um of friction losses $V_1^2 / 2 / g$ S um of friction losses $V_1^2 / 2 / g$ S um of friction losses $V_2^2 / 1000$ $II / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2 / 3.6$ Q_2 $A_2 \times 3600$	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 0.041 0.041 0.041 0.041 0.041 0.041 0.912 0.653 1 2714.400 754.000 1.154	0.003 391722 0.027 0.022 0.004 0.004 0.006 0.002 0.004 0.004 0.008 0.002 0.004 0.018 500+345 500+345 DN960 912 0.653 1800.000 500.000 0.765	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912 0.912 0.653 1 1454.400 404.000 0.618	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.007 m liq 0.007 m liq 0.008 m liq 0.024 m liq 0.024 m liq 577+400 577+400 DN960 912 mm 0.653 m ² 0.912 m 0.653 m ² 2077.200 m ³ /h 577.000 L/s 0.883 m/sec
Reynolds number Reynolds number is Friction factor (Swamee & Jain mod Hydraulic gradient Oty 8 m of pipe le 1 x Inlet Shar 1 x Bend Mec 1 x Elbow Mit 1 x Tee Sub total Pipe Section 2 Pipe size Inside Diameter Area Number of streams of Flow for this pupp size Additional flows for this pip	above 2500, therefore flow n f dified CW equ.) ength o Edged ium Radius 90 re 45 - in line Tee to Filter Water Tank Pipe size and material Pipe size and material rotat flow another source e section	$Re_{1} =$ hay be considered $I = (log (k) + HG_{1}) = (log (k) + HG_{1$	See attached worksheet $V_1 \times D_1$ KV	0.003 590716 0.027 0.051 0.004 0.008 0.013 0.005 0.010 0.041 0.041 0.041 hydraulic drop in drawings DN960 912 0.912 0.653 1 2714.400 754.000	0.003 391722 0.027 0.022 0.004 0.004 0.006 0.002 0.004 0.004 0.018 500+345 500+345 500+345 200912 0.653 1800.000	0.003 316511 0.027 0.015 0.001 0.002 0.004 0.001 0.003 0.012 404+279 DN960 912 0.912 0.653 1 1454.400 404.000	0.003 m 452047 0.027 0.030 m/100 m 0.005 m liq 0.005 m liq 0.007 m liq 0.007 m liq 0.007 m liq 0.006 m liq 0.024 m liq 0.024 m liq 577+400 DN960 912 mm 0.653 m ² 0.912 m 0.653 m ² 2077.200 m ³ /h 577.000 L/s

FILTERED WATER HOLDING TANK TO CHLORINE CONTACT TANK

Design Input	Different cases f	or different flows and/or ele	vations but same piping system	Case 1 Matching hydraulic drop in	Case 2 500+345	Case 3 404+279	Case 3 577+400
Total flow) Q=	Choose units from drop down	drawings	500	404	577 L/s
		Qt = qt =	Qt / 3.6	3643.200 1012.000	1800.000 500.000	1454.400 404.000	2077.200 m³/hr 577.000 L/s
	\checkmark			1.012 87.437	0.500 43.200	0.404 34.906	0.577 m³/s 49.853 ML/d
Liquid:	?						
Density of pumped liqui	d	Dens =		1000	1000	1000	1000 kg/m ³
Density of water		Dens _{H2O} =		1000	1000	1000	1000 kg/m ³
Kinematic Viscosity of I	iquid	KV =		8.910E-07	8.910E-07	8.910E-07	8.910E-07 m ² /s
		KVcst =	KV x 1E6	0.891	0.891	0.891	0.891 cSt

2. Dynamic Conditions

Pipe Section 1	?			Matching hydraulic drop in drawings	500+345	404+279	577+400	
Pipe size Inside Diameter	Pipe size and material	d 1 =	Use accurate internal diameter	DN960 912	DN960 912	DN960 912	DN960 mm 912 mm	
		D 1 =	from tables d 1 / 1000	0.912	0.912	han	0.912 m	
Area		$A_1 =$	$\frac{1}{\pi} / 4 x D_1^2$	0.653	0.653	0.653	0.653 m ²	
Number of streams	for total flow	S ₁ =	Default from Design Inputs	1	1		1	
Flow for this pipe se		·	Default from Design Inputs	3643.200	1800.000	454.400	2077.200 m³/h	nr
Additional flows from			Use for multiple stations, dosing			// 5)	m3/h	hr
Total flow for this pi	ina addition	0	points etc	2642.200	1800.000	1454.400	2077.200 m³/h	
Total flow for this pi	pe section	Q ₁ =	Q ₁ /3.6	3643.200 1012.000	500.000	404.000	577.000 L/s	I
Valasity		$q_{1} = V_{1} =$		1.549		0.618	0.883 m/se	
Velocity		$\mathbf{v}_1 =$	<u>Q</u> 1 A1 x 3600	1.549		0.618	0.883 m/se	ec
Pipe Wall Roughne	<u></u>	k 1 =	See attached worksheet			3	3 mm	
Fipe Wall Roughne	55	$\kappa_1 =$	See allached worksheet	0.003	0.003	0.003	0.003 m	
				0.000		0.000	0.000 111	
Reynolds number		Re 1 =	$V_1 \times D_1$	1585689	783443	633022	904094	
			KV		\sim			
	s above 2500, therefore flow m				✓	0.007	0.007	
Friction factor		1 = (log.(k	0.25	UNEX	0.027	0.027	0.027	
(Swamee & Jain mo	buinea Gw equ.)	(log (k	1/3.7/D1 + 5.74/Re1^0.9)) ²	(())~				
Hydraulic gradient		$HG_1 =$	$f_1 \times 100 \times V_1^2$	9,962	0.089	0.058	0.118 m/10	00 m
		•	$D_1 x 2 x g$	\sim				
Qty		k valu	ie X	$\langle \rangle$				
44 m of pipe	length		x HG 1 / 100	0.159	0.039	0.026	0.052 m liq	7
1 x Inlet Sha	rp Edged	0.	5 per fitting x $V_1^2/2/g$	0.061	0.015	0.010	0.020 m liq	7
1 x Enlargen	nent Sudden		1 per fitting x $V_1^2/2/g$	0.122	0.030	0.019	0.040 m liq	7
Sub total		$dP_1 =$	Sum of friction losses	0.343	0.084	0.055	0.112 m liq	7
Total Dynamic Los	ses			Matahina	500-045	404.070	577.400	
Friction loss in pipe	work		2(>>	Matching hydraulic drop in	500+345	404+279	577+400	
Pipe Section 1	?	dP 1 =		0.343	0.084	0.055	0.112 m liq	3
Total		DHd =	$dF + dP2 + dP3 + dP4 + dP_5$	0.343	0.084	0.055	0.112 m liq	7
		($+dP_6+dP_7+dP_8+dP_9+dP_{10}$					
Safety margin on dy	mamic losses	dP% =	× ·	5.00%	5.00%	5.00%	5.00%	
Dynamic losses	Vildinic 105585	Hd% =	AT the dp%) x DHd	0.360	0.088	0.058	0.117 m liq	r
2 y name locooo				0.000	0.000	0.000	0.117 11119	1
-								
Elevations								
	◆ 3.710	\bigcirc						
	\sim							
	× 3.468	\sim						
	3:408	\bigtriangledown		3.350				
	≤ 2							
	~\\ ·							
							_	
	$\mathcal{A}(\mathcal{A})$			Matching	500+345	404+279	577+400	
				hydraulic drop				
Julat al configuration of the state		Hd% =		0.360	0.088	0.058	0.117 mm	
Inlet elevation liquid Outlet elevation liquid		ELi = ELo =	ELo + HD% Top Water Level Downstream	3.710 3.350	3.438 3.350	3.408 3.350	3.467 m EL 3.350 m EL	
		EL0 =	TOP Water Level Downstream	3.330	3.330	3.330	3.330 III EL	-
LORINE CON	TACT TANK OUTLET							_
Design Input	~			Case 1	Case 2	Case 3	Case 3	
-	Different cases			To existing	To outfall	?	?	
				secondary clarifier				
				orarmor				

			clarifier			
Total flow	Q =		1610	4835		L/s
	Qt = qt =	Qt / 3.6	5796.000 1610.000	17406.000 4835.000	0.000 0.000	0.000 m³/hr 0.000 L/s

CIIID

	Calculation Gravity Pipeline - Full Pipe	CBP Consulting Croup My LLG Office 2, unit 1, 2008 Springrade Read, Midgraws VIC 3170 Please (VIC 3170 Please (VIC 3170 Warw.onggresp.com.au			(
		qts = qt / 1000	1.610 139.104	4.835 417.744	0.000 0.000	0.000 m³/s 0.000 ML/d
łyc	laulic drop in drawngs is 815mm.					
2.	Dynamic Conditions				\square	2 N
	Weir width Weir width is	$b = b = c \qquad qts \qquad y^{2/3} + 0.00$	1250 1.25 0.1 0.815	3750 3.75	Co	
	Height over weir is	$h = \left(\frac{qts}{0.595 \times 2/3 \times \sqrt{2g} \times (b - 0.003)}\right)^{2/3} + 0.00$	01 0.815 815	0.815 815		0.001 m 1 mm
				C	$\tilde{\mathcal{A}}$	
					\bigcirc	
					>	
				$\langle \nabla \rangle$		
				>		
		Ş				
		$\overline{\Omega}$				
			\bigcup_{n}			
			 Image: A set of the set of the			
		\bigcirc				
	×					
	~~	\diamond				
	X	ク				
	the second secon					
	\sim					

Calculation Pump Station Head CMP Consulting Group Pty Ltd Office 2, Level 1, 700 Springvale Road, Mulgrave VIC 3170 Phone (03) 9002 0710 www.cmpgroup.com.au

FILTER FEED PUMPS

1.	Design Input				Case 1	Case 2	Case 3
		Different cases for different	t flows and/or e	levations but same piping system	40	45	50
	Pump Type	Submersible	DN				
	No of duty pumps		PN =	Graphs on the System Curve work	1 sheet will be displa	aved in the upits	elected below.
	Total flow		Q =	Choose units from drop down	500	404	577 L/s
			Qt = qt =	Qt / 3.6	1800.000 500.000	454 400	2077.200 m ³ /hr 577.000 L/s
					0.500	0.40 4 0.40 4	0.577 m³/s 49.853 ML/d
					43.200	04.900	
	Flow per pump		Qp =	Qt / PN	500 1800-000	404	577 L/s 2077.200 m³/hr
			qp =	Qp / 3.6	500.000	404.000	577.000 L/s
	Pumped liquid:	water				<i>y</i>	
	Density of pumped liq		Dens =			1000	1000 kg/m ³
	Density of water Kinematic Viscosity of	fliquid	Dens _{H2O} = KV =		1000 1.137E-06	1000 8.910E-07	1000 kg/m ³ 8.910E-07 m ² /s
	Rinematic viscosity of	inquid	KVcst =	KV x 1E6	1.137	0.891	0.891 cSt
				حرر	<u></u>		
2.	Static Conditions			\bigcirc	\diamond		
				\circ)		
					/	.000 7.000 ♦	
		3.890					
				C 2000		7	7
	2.1 Pump				40	45	50
	Elevation of pump		ELDE (0.000	0.000	0.000 m EL
			× ×	\bigcirc			
	2.2 Suction			>			
	Elevation liquid level Liquid pressure at pur	mn 🔨	si =	ELsI - ELp	3.890 3.890	3.890 3.890	<mark>3.890</mark> m EL 3.890 m lig
	Liquid pressure at pur	iip		ELSI - ELP	3.890	3.890	5.890 III liq
	Air or gas pressure	-	SRQ	e.g. pumping from pressurised system			kPag
	Equivalent liquid head	I due to air pressure	SPm =	SPg / Dens / g x 1E3	0.000	0.000	0.000 m liq
	Static suction head	\sim) SHs =	SPI + SPm	3.890	3.890	3.890 m liq
		i la	-				·
	2.3 Discharge	\sim					
	Elevation liquid level Liquid pressure at pur		ELdl = DPl =	ELdi - Elp	7.000 7.000	7.000 7.000	7.000 m EL 7.000 m liq
				сци - сір	7.000	7.000	
	Air or gas pressure		DPg =	e.g. pumping to pressurised system			kPag
	Equivalent liquid head	due to an pressure	DPm =	DPg / Dens / g x 1E5	0.000	0.000	0.000 m liq
	Static discharge head	$\langle \bigtriangledown \rangle$	DHs =	DPI + DPm	7.000	7.000	7.000 m liq
		$\searrow U$	0113 -		7.000	7.000	7.000 11119
	2.4 Static Head						
	Static differential head	>	Hs =	DHs - SHs	3.110	3.110	3.110 m liq
	Static differential head	>	Hs =	DHs - SHs	3.110	3.110	3.110 m liq

3. Dynamic Conditions

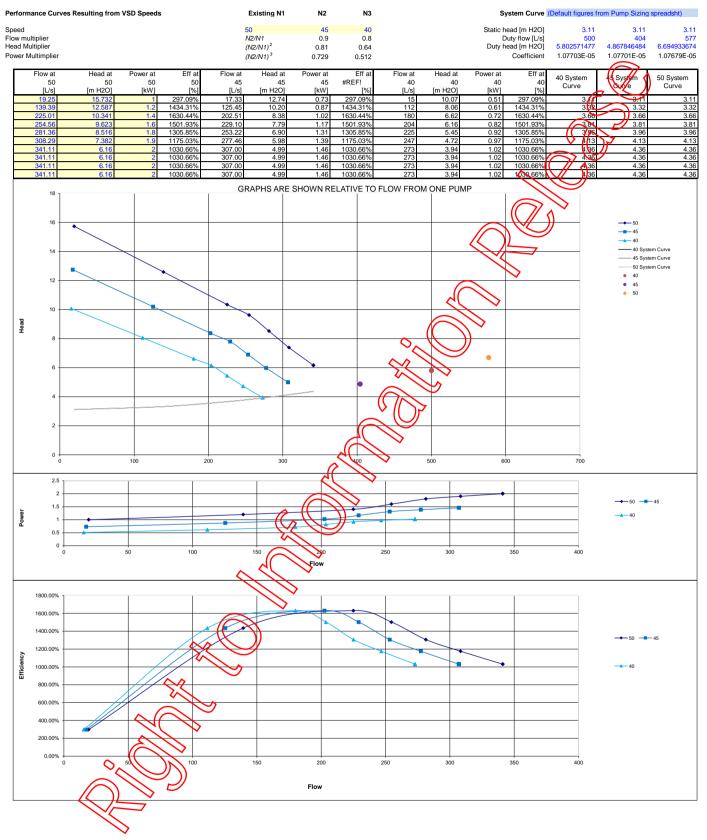
3.1 Suction

Pipe Section 1	Not used	40	45	50
Pipe Section 2	Not used	40	45	50
Pipe Section 3	Not Used	40	45	50
Pipe Section 4	Not Used	40	45	50

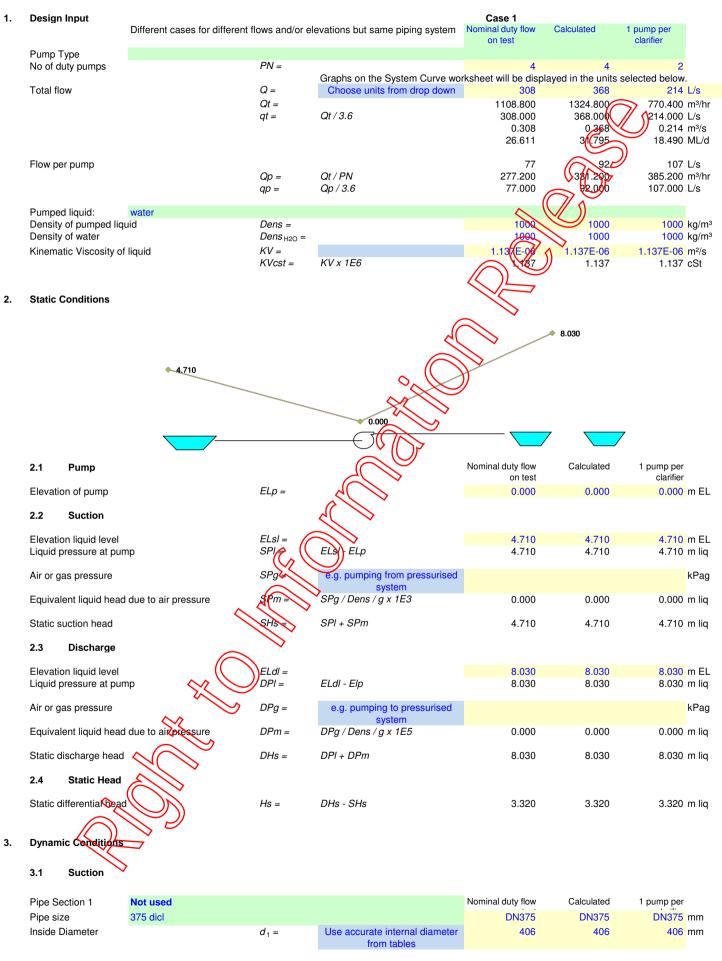
3.2 Discharge

Pipe Section 5 Pump Discharge			40	45	50
Pipe size St Stl			DN500	DN500	DN500 mm
Inside Diameter	<i>d</i> ₅ =	Use accurate internal diameter	495.3	495.3	495.3 mm
	5	from tables		\mathcal{C}	
	D 5 =	<i>d</i> ₅ / 1000	0.4953	0.4953	0.4953 m
Area	A ₅ =	$\Pi / 4 \times D_{5^{2}}$	0.193	(193	0.193 m ² area
	715 -	$11 / + \times D_5$	0.100		0.100 111 4104
	-				
Number of streams for total flow	<i>S</i> ₅ =	Default from Design Inputs	1 (\mathcal{T}	1
Flow for this pump station		Default from previous section	1800	1454.4	2077.2 m ³ /hr
Additional flows from another source		Use for multiple stations, dosing		$\underline{\bigcirc}$	m3/hr
		points etc		N N	
Total flow for this pipe section	Q ₅ =		1800.000	1454.400	2077.200 m ³ /h
	<i>q</i> ₅ =	Q ₅ /3.6	500,000))	404.000	577.000 L/s
Velocity	$V_5 =$	\underline{Q}_5	2.595	2.097	2.995 m/sec
	• 5	<u>∽</u> 5 A₅ x 3600		2.007	21000 11,000
	1.	A ₅ x 3000		0	2
Pipe Wall Roughness	k ₅ =		> 3	3	3 mm
		G	0.003	0.003	0.003 m
)لم	\searrow		
Reynolds number	Re 5 =	$\underline{V}_5 \times D_5$	1130450	1165589	1664715
		$\frac{1}{KV}$			
Demolds combania alto 10500 til 1 1)		
Reynolds number is above 2500, therefore flow			/		
Friction factor	$f_5 =$	0.25	0.032	0.032	0.032
(Swamee & Jain modified CW equ.)	(log (l	k5/3.7/D5+5.74/Be5(0.9)			
• •					
Hydraulic gradient	HG 5 =	<u>f</u> ₅ x 100 x V ₅	2.241	1.463	2.981 m/100 n
Hydraulic gradient	$n\alpha_5 =$		2.241	1.405	2.901 11/1001
		$D_5 \times 2 \times 9$			
Quantity	k va	lue			
13 m of Pipe length		x HQ TTO	0.291	0.190	0.387 m liq
1 x Valve - Check wafer		3 per titling $\times V_5^2/2/g$	1.030	0.672	1.371 m lig
1 x Valve - Butterfly full bore		0.4 per fitting $\times V_{5^2}/2/g$	0.137	0.090	0.183 m liq
and the second					•
1 x Tee Sharp Edge - branch		1.2 per fitting $x V_5^2 / 2 / g$	0.412	0.269	0.549 m liq
					•
Sub total	dP₅	Sun of friction losses	1.870	1.221	2.490 m liq
Sub total	dP₅ ₹			1.221	2.490 m liq
Sub total Pipe Section 6 afte 1 st offtake	dP₅. ₹			1.221	2.490 m liq
Pipe Section 6 afte 1 st offtake	dP₅≡		1.870	45	50
Pipe Section 6afte 1 st offtakePipe sizest stl		Stor of friction losses	1.870 40 DN500	45 DN500	50 DN500 mm
Pipe Section 6 afte 1 st offtake		Stor of friction losses	1.870	45	50
Pipe Section 6afte 1 st offtakePipe sizest stl		Use accurate internal diameter from tables	1.870 40 DN500 495.3	45 DN500 495.3	50 DN500 mm 495.3 mm
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter		Stor of friction losses Use accurate internal diameter from tables d ₆ / 1000	1.870 40 DN500 495.3 0.4953	45 DN500 495.3 0.4953	50 DN500 mm 495.3 mm 0.4953 m
Pipe Section 6afte 1 st offtakePipe sizest stl		Use accurate internal diameter from tables	1.870 40 DN500 495.3	45 DN500 495.3	50 DN500 mm 495.3 mm
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter		Stor of friction losses Use accurate internal diameter from tables d ₆ / 1000	1.870 40 DN500 495.3 0.4953	45 DN500 495.3 0.4953	50 DN500 mm 495.3 mm 0.4953 m
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter		Sup of friction losses Use accurate internal diameter from tables $d_6 / 1000$ $\Pi / 4 \times D_6^2$	1.870 40 DN500 495.3 0.4953	45 DN500 495.3 0.4953 0.193	50 DN500 mm 495.3 mm 0.4953 m
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow		Stor of friction losses Use accurate internal diameter from tables d ₆ / 1000 II / 4 x D ₆ ² Default from Design Inputs	1.870 40 DN500 495.3 0.4953 0.193 1.33333	45 DN500 495.3 0.4953 0.193 1.33333	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station		Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section	1.870 40 DN500 495.3 0.4953 0.193	45 DN500 495.3 0.4953 0.193	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow		Support friction losses Use accurate internal diameter from tables d_6 / 1000 II / 4 x D ₆ ² Default from Design Inputs Default from previous section Use for multiple stations, dosing	1.870 40 DN500 495.3 0.4953 0.193 1.33333	45 DN500 495.3 0.4953 0.193 1.33333	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source	$B_{6} = $ $A_{6} = $ $S_{6} = $	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003	45 DN500 495.3 0.4953 0.193 1.33333 1090.803	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr m3/hr
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station	$Q_6 =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003	45 DN500 495.3 0.4953 0.193 1.33333 1090.803	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section	$ \begin{array}{c} $	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001	50 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source	$Q_6 =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003	45 DN500 495.3 0.4953 0.193 1.33333 1090.803	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section	$ \begin{array}{c} $	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001	50 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s
Pipe Section 6 Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$Q_6 = Q_6 = Q_6 = V_6 =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001	50 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s
Pipe Section 6 Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section	$ \begin{array}{c} $	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 1350.003 375.001 1.946 3	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$Q_6 = Q_6 = Q_6 = V_6 =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec
Pipe Section 6 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness	$Q_6 = Q_6 = Q_6 = V_6 = K_6 $	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946 3 0.003	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 303.001 1.573 3 0.003	50 DN500 mm 495.3 mm 0.4953 m 0.193 m² area 1.33333
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$Q_6 = Q_6 = Q_6 = V_6 =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 1350.003 375.001 1.946 3	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm
Pipe Section 6 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness	$Q_6 = Q_6 = Q_6 = V_6 = K_6 $	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946 3 0.003	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 303.001 1.573 3 0.003	50 DN500 mm 495.3 mm 0.4953 m 0.193 m² area 1.33333
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number	$Q_{6} = Q_{6} = Q_{6} = Q_{6} = Q_{6} = Q_{6} = Q_{6} = Re_{6} =$	Sup of friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V}{6} \times D_6$ KV	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946 3 0.003	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 303.001 1.573 3 0.003	50 DN500 mm 495.3 mm 0.4953 m 0.193 m² area 1.33333
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $K_{6} =$ $Re_{6} =$ $Re_{6} =$	Support friction losses Use accurate internal diameter from tables d_6 / 1000 $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6}{KV}$ ered turbulent	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 1350.003 375.001 1.946 3 0.003 847840	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3 0.003 874194	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm 0.003 m 1248539
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $K_{6} =$ $Re_{6} =$ $Re_{6} =$ $r_{6} =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V}{6} \times D_6$ KV ered turbulent 0.25	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946 3 0.003	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 303.001 1.573 3 0.003	50 DN500 mm 495.3 mm 0.4953 m 0.193 m² area 1.33333
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $K_{6} =$ $Re_{6} =$ $Re_{6} =$ $r_{6} =$	Support friction losses Use accurate internal diameter from tables d_6 / 1000 $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6}{KV}$ ered turbulent	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 1350.003 375.001 1.946 3 0.003 847840	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3 0.003 874194	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm 0.003 m 1248539
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number to above 2500, therefore flow Friction factor	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $K_{6} =$ $Re_{6} =$ $Re_{6} =$ $r_{6} =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V}{6} \times D_6$ KV ered turbulent 0.25	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 1350.003 375.001 1.946 3 0.003 847840	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3 0.003 874194	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm 0.003 m 1248539
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number to above 2500, therefore flow Friction factor	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $K_{6} =$ $Re_{6} =$ $Re_{6} =$ $r_{6} =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V}{6} \times D_6$ KV ered turbulent 0.25	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 1350.003 375.001 1.946 3 0.003 847840	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3 0.003 874194	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm 0.003 m 1248539
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified CW equ.)	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ $Re_{6} =$ $(\log n)$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6}{KV}$ ered turbulent 0.25 $k6 / 3.7 / D6 + 5.74 / Re6^0.9$)) ² $f_6 \times 100 \times V_6^2$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946 3 0.003 847840 0.032	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3 0.003 874194 0.032	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm 0.003 m 1248539 0.032
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified CW equ.) Hydraulic gradient	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ $Re_{6} =$ $Index f_{6} =$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6}{KV}$ ered turbulent 0.25 $k6 / 3.7 / D6 + 5.74 / Re6^0.9$)) ² $\frac{f_6 \times 100 \times V_6^2}{D_6 \times 2 \times g}$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946 3 0.003 847840 0.032	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3 0.003 874194 0.032	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm 0.003 m 1248539 0.032
Pipe Section 6 afte 1 st offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified CW equ.)	$Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $Q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ $Re_{6} =$ $(\log n)$	Support friction losses Use accurate internal diameter from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6}{KV}$ ered turbulent 0.25 $k6 / 3.7 / D6 + 5.74 / Re6^0.9$)) ² $\frac{f_6 \times 100 \times V_6^2}{D_6 \times 2 \times g}$	1.870 40 DN500 495.3 0.4953 0.193 1.33333 1350.003 375.001 1.946 3 0.003 847840 0.032	45 DN500 495.3 0.4953 0.193 1.33333 1090.803 1090.803 303.001 1.573 3 0.003 874194 0.032	50 DN500 mm 495.3 mm 0.4953 m 0.193 m ² area 1.33333 1557.904 m ³ /hr 1557.904 m ³ /h 432.751 L/s 2.246 m/sec 3 mm 0.003 m 1248539 0.032

6 m of Ding longth		× HG / 100	0.076	0.040	0.101 m lia
6 m of Pipe length 1 x Tee - in line		$x HG_6 / 100$ 0.6 per fitting x V ₆ ² / 2 / g	0.076 0.116	0.049 0.076	0.101 m liq 0.154 m liq
Sub total	dP ₆ =	Sum of friction losses	0.192	0.125	0.255 m liq
	 0				
Pipe Section 7 After 2nd offtake			40	45	50
Pipe size st stl			DN500	DN500	DN500 mm
Inside Diameter	<i>d</i> ₇ =	Use accurate internal diameter	495.3	495.3	495.3 mm
	D ₇ =	from tables <i>d</i> ₇ / 1000	0.4953	0.4953	0.4953 m
Area	$A_7 =$	$\Pi / 4 \times D_{7}^{2}$	0.193	0.193	0.193 m ² area
				R	
Number of streams for total flow	<i>S</i> ₇ =	Default from Design Inputs	2	6	2
Flow for this pump station		Default from previous section	900.000	787.200	1038.600 m³/hr
Additional flows from another source		Use for multiple stations, dosing		$\langle () \rangle$	m3/hr
Total flow for this pipe section	Q ₇ =	points etc	900.000	77.200	1038.600 m³/h
rotar now for this pipe section	$q_7 = q_7 =$	Q ₇ /3.6	250.000	202.000	288.500 L/s
Velocity	$V_7 = V_7 =$	\underline{Q}_7	1.298	1.048	1.497 m/sec
	- /	A ₇ x 3600	$\widehat{\mathbf{O}}$		
Pipe Wall Roughness	k ₇ =	See attached worksheet		3	<mark>3</mark> mm
	·		0.003	0.003	0.003 m
			\sim		
Reynolds number	Re 7 =	$\underline{V}_7 \times D_7$	505225	582795	832358
		KV			
Reynolds number is above 2500, therefore flow			\searrow		
Friction factor	f ₇ =	0.25	0.032	0.032	0.032
(Swamee & Jain modified CW equ.)	(<i>log</i> (<i>l</i>	k7 / 3.7 / D7 + 5.74 / Re7^0.9()) ²			
Hydraulic gradient	<i>HG</i> ₇ =	$f_7 \times 100 \times V_{7^2}$	0.562	0.367	0.747 m/100 m
Tyuraulic gradient	110 ₇ =	$D_7 \times 2 \times g$	0.302	0.307	0.747 11/100 111
Quantity	k va				
6 m of Pipe length		x HG ₇ / 100	0.034	0.022	0.045 m lig
1 x Tee - in line		0.6 per fitting χV_{7}^2	0.051	0.034	0.069 m liq
Sub total	15				
Subilita	$dP_7 =$	Sum of Inction losses	0.085	0.056	0.113 m liq
	dP ₇ =	Sum of Inction losses			•
Pipe Section 8 After 3rd offtake	dP ₇ =	Sum of Inction Iosses	40	45	50
Pipe Section 8After 3rd offtakePipe sizest stl			40 DN500	45 DN500	50 DN500
Pipe Section 8 After 3rd offtake	dP ₇ =	Use accurate internal diameter	40	45	50
Pipe Section 8After 3rd offtakePipe sizest stl			40 DN500	45 DN500	50 DN500
Pipe Section 8After 3rd offtakePipe sizest stl	$d_8 = D_8$	Use accurate internal diameter from tables	40 DN500 495.3	45 DN500 495.3	50 DN500 495.3 mm
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter .	<i>d</i> ₈ =	Use accurate internal diameter from tables d_8 , 000 $4 \times D_8^2$	40 DN500 495.3 0.4953	45 DN500 495.3 0.4953	50 DN500 495.3 mm 0.4953 m
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Number of streams for total flow	$d_8 = D_8$	Use accurate internal diameter from tables d_8 0000 $4 \times D_8^2$ Default from Design Inputs	40 DN500 495.3 0.4953 0.193 4	45 DN500 495.3 0.4953 0.193 4	50 DN500 495.3 mm 0.4953 m 0.193 m ² area
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station	$d_8 = D_8$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section	40 DN500 495.3 0.4953 0.193	45 DN500 495.3 0.4953 0.193	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Number of streams for total flow	$d_8 = D_8$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing	40 DN500 495.3 0.4953 0.193 4	45 DN500 495.3 0.4953 0.193 4	50 DN500 495.3 mm 0.4953 m 0.193 m ² area
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station	$d_8 = D_8 + A_8 + C_8 $	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section	40 DN500 495.3 0.4953 0.193 4	45 DN500 495.3 0.4953 0.193 4	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source	$d_8 = D_8$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing	40 DN500 495.3 0.4953 0.193 4 450.000	45 DN500 495.3 0.4953 0.193 4 363.600	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr m3/hr
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source	$d_8 = $ $D_8 \qquad \qquad$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8	40 DN500 495.3 0.4953 0.193 4 450.000	45 DN500 495.3 0.4953 0.193 4 363.600 363.600	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$d_{8} =$ D_{8} $A_{8} =$ $Q_{8} =$ $Q_{8} =$ $Q_{8} =$ $V_{8} =$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ \underline{Q}_8 $A_8 \times 3600$	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Item 100 (Content of the section)	$d_8 =$ $D_8 \qquad \qquad$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8	40 DN500 495.3 0.4953 0.193 4 450.000 125.000 0.649 3	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$d_{8} =$ D_{8} $A_{8} =$ $Q_{8} =$ $Q_{8} =$ $Q_{8} =$ $V_{8} =$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ \underline{Q}_8 $A_8 \times 3600$	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec
Pipe Section 8 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness	$d_8 =$ D_8 A_8 $Q_8 =$ $Q_8 =$ $Q_8 =$ $V_8 =$ $K_8 =$	Use accurate internal diameter from tables d_8 , 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ \underline{Q}_8 $A_8 \times 3600$ See attached worksheet	40 DN500 495.3 0.4953 0.193 4 450.000 125.000 0.649 3 0.003	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$d_{8} =$ D_{8} $A_{8} =$ $Q_{8} =$ $Q_{8} =$ $Q_{8} =$ $V_{8} =$	Use accurate internal diameter from tables d_8 , 000 $1/4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\underline{V}_8 \times D_8$	40 DN500 495.3 0.4953 0.193 4 450.000 125.000 0.649 3	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number	$d_8 =$ D_8 A_8 A_8 $Q_8 =$ $Q_8 =$ $Q_8 =$ $V_8 =$ $K_8 =$ $Re_8 =$	Use accurate internal diameter from tables d_8 , 000 $1/4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $V_8 \times D_8$ KV	40 DN500 495.3 0.4953 0.193 4 450.000 125.000 0.649 3 0.003	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow	$d_{8} =$ D_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$ may be consider	Use accurate internal diameter from tables d_8 , 000 $1/4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $V_8 \times D_8$ KV	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number	$d_{8} =$ D_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$ may be consider $f_{8} =$	Use accurate internal diameter from tables d_8 , 000 $H 4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\frac{V}{KV}$ ered turbulent	40 DN500 495.3 0.4953 0.193 4 450.000 125.000 0.649 3 0.003	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor	$d_{8} =$ D_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$ may be consider $f_{8} =$	Use accurate internal diameter from tables d_8 , 000 $H 4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\frac{V}{K}_8 \times D_8$ KV ered turbulent 0.25	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor Velocity	$d_{8} =$ D_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$ may be consider $f_{8} =$	Use accurate internal diameter from tables d_8 , 000 $H 4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\frac{V}{K}_8 \times D_8$ KV ered turbulent 0.25	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified GW equ)	$d_{8} =$ D_{8} A_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$ $Re_{8} =$ $r_{8} =$ $(log (a))$	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\frac{V_8 \times D_8}{KV}$ ered turbulent 0.25 $k8/3.7/D8 + 5.74/Re8^{0.9}))^2$	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612 0.033	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397 0.033	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179 0.033
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified GW equ)	$d_{8} =$ D_{8} A_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$ $Re_{8} =$ $r_{8} =$ $(log (a))$	Use accurate internal diameter from tables d_8 1000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $V_8 \times D_8$ KV erred turbulent 0.25 $k8/3.7/D8 + 5.74/Re8^{0.9}))^2$ $f_8 \times 100 \times V_8^2$ $D_8 \times 2 \times g$	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612 0.033	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397 0.033	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179 0.033
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified GW equ.) Hydraulic gradieo Quantity 6 m of Pipe length	$d_{8} =$ D_{8} $A_{8} =$ $Q_{8} =$ $q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} $	Use accurate internal diameter from tables d_8 000 $4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\frac{V_8 \times D_8}{KV}$ ered turbulent 0.25 $k8/3.7/D8 + 5.74/Re8^{0.9}))^2$ $f_8 \times 100 \times V_8^2$ $D_8 \times 2 \times g$ lue $x HG_8/100$	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612 0.033	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397 0.033	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179 0.033 0.188 m/100 m
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified GW equ) Hydraulic grasteer Quantity 6 m of Pipe length 1 x Tee Sharp Edge - branch	$d_{8} =$ D_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$	Use accurate internal diameter from tables d_8 , 000 1.2 k D_8^2 Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\frac{V_8 \times D_8}{KV}$ erred turbulent 0.25 $k8/3.7/D8 + 5.74/Re8^{0.9}))^2$ $f_8 \times 100 \times V_8^2$ $D_8 \times 2 \times g$ lue $\times HG_8/100$ 1.2 per fitting $\times V_8^2/2/g$	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612 0.033 0.141	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397 0.033 0.033	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179 0.033 0.188 m/100 m
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified GW equ) Hydraulic grasteor Quantity 6 m of Pipe length 1 x Tee Sharp Edge - branch 1 x Reducer 5:3	$d_{8} =$ D_{8} A_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$ Re	Use accurate internal diameter from tables d_8 , 000 $1/4 \times D_8^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ $Q_8/$	40 DN500 495.3 0.4953 0.193 4 450.000 125.000 0.649 3 0.003 282612 0.033 0.141 0.008 0.026 0.006	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397 0.033 0.092 0.092 0.006 0.017 0.004	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179 0.033 0.188 m/100 m 0.011 m liq 0.034 m liq 0.008 m liq
Pipe Section 8 After 3rd offtake Pipe size st stl Inside Diameter Area Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow Friction factor (Swamee & Jain modified GW equ) Hydraulic grasteer Quantity 6 m of Pipe length 1 x Tee Sharp Edge - branch	$d_{8} =$ D_{8} A_{8} $Q_{8} =$ $Q_{8} =$ $Q_{8} =$ $V_{8} =$ $K_{8} =$ $Re_{8} =$	Use accurate internal diameter from tables d_8 , 000 1.2 k D_8^2 Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_8/3.6$ Q_8 $A_8 \times 3600$ See attached worksheet $\frac{V_8 \times D_8}{KV}$ erred turbulent 0.25 $k8/3.7/D8 + 5.74/Re8^{0.9}))^2$ $f_8 \times 100 \times V_8^2$ $D_8 \times 2 \times g$ lue $\times HG_8/100$ 1.2 per fitting $\times V_8^2/2/g$	40 DN500 495.3 0.4953 0.193 4 4 450.000 125.000 0.649 3 0.003 282612 0.033 0.141 0.008 0.026	45 DN500 495.3 0.4953 0.193 4 363.600 101.000 0.524 3 0.003 291397 0.033 0.092 0.092 0.006 0.017	50 DN500 495.3 mm 0.4953 m 0.193 m ² area 4 519.300 m ³ /hr 519.300 m ³ /h 144.250 L/s 0.749 m/sec 3 mm 0.003 m 416179 0.033 0.188 m/100 m 0.011 m liq 0.034 m liq


	T (1)			40	45	50
Pipe Section 9	Entrance to filter			40	45	50
Pipe size Inside Diameter	st stl	d	Use accurate internal diameter	DN300	DN300	DN300
Inside Diameter		d ₉ =	from tables	304.84	304.84	304.84 mm
		D ₉ =	d ₉ / 1000	0.30484	0.30484	0.30484 m
Area		$A_9 =$	$\Pi / 4 \times D_0^2$	0.073	0.073	0.073 m ² area
71100		, ig -	11 / - X Dg	0.070	0.070	0.070 111 0.00
Number of streams f	or total flow	S ₉ =	Default from Design Inputs	4	4	4
Flow for this pump s		- 3	Default from previous section	450.000	363.600	519.300 m ³ /hr
Additional flows from			Use for multiple stations, dosing	1001000		m3/hr
			points etc			
Total flow for this pip	e section	Q ₉ =		450.000	363.600	519.300 m ³ /h
		<i>q</i> ₉ =	Q ₉ /3.6	125.000	101.000	144.250 L/s
Velocity		V ₉ =	<u>Q</u> ₉	1.713	(7,384	1.976 m/sec
			A ₉ x 3600		V (()7	
Pipe Wall Roughnes	s	k ₉ =	See attached worksheet	3 ($\overline{}$	3 mm
				0003	0.003	0.003 m
					\bigcirc	
Reynolds number		<i>Re</i> ₉ =	<u>V</u> ₉ x D ₉	459185	473458	676202
			KV	(// 1	•	
	above 2500, therefore flow			\land		0.000
Friction factor		f ₉ =	0.25	0.038	0.038	0.038
(Swamee & Jain mo	dified CW equ.)	(log (l	(9 / 3.7 / D9 + 5.74 / Re9^0.9))²			
Hydraulic gradient		HG ₉ =	<u>f</u> ₉ x 100 x V ₉ ²	7.860	1.214	2.472 m/100 r
. iyaraano gradient		, i 😋 g –	$D_9 \times 2 \times g$		1.217	2.472 11/1001
Quantity		k val		\searrow		
Quantity 1 m of Pipe l	enath	K Val	<i>x HG</i> ₉ / 100	0.019	0.012	0.025 m liq
1 x Elbow Sh	0		1 per fitting x $V_{g^2}/2/g$	0.150	0.098	0.199 m liq
1 x Enlargem			1 per fitting x $V_9^2/2^2$	0.150	0.098	0.199 m liq
				·		•
	utterfly full bore		0.4 per fitting x V ₉ ² 2/2/g Sum of friction losses	0.060	0.039	0.080 m liq
Sub total		dP ₉ =	Sum of metion losses	0.377	0.246	0.503 m liq
Total Dynamic Loss	ses		, Or			
Friction loss in suction	on pipework					
Pipe Section 1	Not used	dP 1 =		0.000	0.000	0.000 m liq
Pipe Section 2	Not used	$dP_2 =$	$\mathcal{A}(\mathbb{N})$	0.000	0.000	0.000 m liq
Pipe Section 3	Not Used	$dP_3 =$		0.000	0.000	0.000 m lig
Pipe Section 4	Not Used	dP ₄		0.000	0.000	0.000 m liq
Total		SHO	dP_1 $dP_2 + dP_3 + dP_4$	0.000	0.000	0.000 m liq
, ota.		- SX		01000	01000	oroco minq
Friction loss in disch	arge pipework		\searrow			
Pipe Section 5	Pump Discharge		s`	1.870	1.221	2.490 m liq
Pipe Section 6	afte 1 st offtake		*	0.192	0.125	0.255 m liq
Pipe Section 7	After 2nd offtake			0.085	0.056	0.233 m liq 0.113 m liq
Pipe Section 8	After 3rd offtake	$dP_8 =$		0.085	0.056	0.053 m liq
•						•
Pipe Section 9	Entrance to filter	dP ₉ = DHd =	$dP_{5} + dP_{6} + dP_{7} + dP_{8} + dP_{9} +$	0.377	0.246	0.503 m liq
Total	-		$dF_5 + dF_6 + dF_7 + dF_8 + dF_9 +$	2.564 40	1.674	3.414 m liq 50
Summary		ク		+0		50
Safety margin on dy	namic losse	dP% =		5.00%	5.00%	5.00%
Suction dynamic los		SHd% =	(1 + dp%) x SHd	0.000	0.000	0.000 m liq
Discharge dynamic I		DHd% =	$(1 + dp\%) \times DHd$	2.693	1.758	3.585 m liq
Total dynamic losses		Hd% =	SHd% + Dhd%	2.693	1.758	3.585 m liq
Total suction head	\bigcirc	TSHg =	SHs - SHd%	3.890	3.890	3.890 m liq g
Total Subtion nead		Ū				10
0,	aure nead	TDHg =	DHs + DHd%	9.693	8.758	10.585 m liq g
Total required discha				5.803	4.868	6.695 m liq
Total required discha	al Head Requirements	DHr =	TDHg - TSHg			
Total required discha		DHr =	= DHr x Dens / Dens _{H2O}	5.803	4.868	6.695 m H ₂ O
Total required discha		DHr =	5 5			
Total required discha			= DHr x Dens / Dens _{H2O}	5.803 40	4.868 45	6.695 m H ₂ O
Total required disch	al Head Requirements		= DHr x Dens / Dens _{H2O}			

7. Estimated Power Required


	Assumed efficiency	Peff =		70.00%	70.00%	70.00%
	Estimated absorbed pump power	Pabs =	<u>qp x DHr x Dens x g</u> Peff	40.66	27.56	54.14 kW
8.	Notes					
S:\P	rojects\TYR-190531 - Tyr WWTP Upgrade Assistance\4	Working Docs\[TYR-190531-0	CAL01c - Filter Feed Pumps.xlsx]Pump Sizing	9		V15
					G	J
					T	
					Z	
					>	
			4			
			0,0	~		
			St.			
		Cal	\mathcal{D}			
			<i>></i>			
	X	\bigcirc				
	×.	\diamond				
	Starting of the second se					

Calculation 0000 2, Luni 7, 195 physical bark, Burnp Station Head 99408 2010 99404 (0) 9942 2010
--

FILTER FEED PUMPS

RAS PUMPS

	D ₁ =	<i>d</i> ₁ / 1000	0.406	0.406	0.406	m
Area	A ₁ =	П / 4 х D ₁ ²	0.129	0.129	0.129	
Number of streams for total flow	<i>S</i> ₁ =	Default from Design Inputs	2	2	2	
Flow for this pipe section	01-	Default from Design Inputs	554.4	662.4	385.2	m³/hr
Additional flows from another source		Use for multiple stations, dosing				m3/hr
Total flow for this pipe section	<i>Q</i> ₁ =	points etc	554.400	662.400	385.200	m³/h
	<i>q</i> ₁ =	Q1/3.6	154.000	184.000	107.000	
Velocity	$V_1 =$	<u>Q</u> ₁	1.190	1.421	0.826	m/sec
Pipe Wall Roughness	k ₁ =	A ₁ x 3600 See attached worksheet	3		2	mm
Tipe wai nouginess	<i>K</i> ₁ =	Oee allached worksheet	0.003	0.003	0.003	
				$\langle \rangle \rangle >$		
Reynolds number	<i>Re</i> ₁ =	$\underline{V}_1 \times D_1$	424761	507506	295126	
Reynolds number is above 2500, therefore flow ma	av he conside	KV red turbulent	$\langle \rangle$	\bigotimes		
Friction factor f_1	•	0.25	0,035	0.035	0.035	
(Swamee & Jain modified CW equ.)	(log (k	:1 / 3.7 / D1 + 5.74 / Re1^0.9))²		ົ		
	110	f 100) / 2		0.070	0.007	(100
Hydraulic gradient	<i>HG</i> ₁ =	$\frac{f_1 \times 100 \times V_1^2}{D_1 \times 2 \times g}$	L0.614	0.876	0.297	m/100 m
Qty	k val					
24 m of pipe length		x HG ₁ / 100	0.147	0.210	0.071	•
1 x Inlet Sharp Edged 2 x Elbow Mitre 45		1.5 per fitting x V ₁ ² /2/g	0.036	0.051	0.017	
1 x Tee Sharp Edge - branch		1.3 per fitting x $V_1^2/2/g$.2 per fitting x $V_1^2/2/g$	0.043	0.062 0.124	0.021 0.042	•
0 Select		0 per fitting x $V_1^2/2/g$	0.000	0.000	0.000	•
0 Select		0 per fitting x V_1^2	0.000	0.000	0.000	m liq
0 Select		0 per fitting x $V_1^2/2/9$	0.000	0.000	0.000	•
0 Select 0 Select		0 per fitting x $V(7+2)$ g 0 per fitting x $V(7+2)$ g	0.000 0.000	0.000 0.000	0.000 0.000	
0 Other			0.000	0.000	0.000	•
Sub total	dP 1 =	Sum of miction losses	0.313	0.447	0.151	m lia
Subiola	<i>ur</i> ₁ =	Sull of Inclicit losses	0.515	0.447	0.151	ining
	<i>ur</i> ₁ =			-		
Pipe Section 2 Pipe size	ur ₁ =		Nominal duty flow	Calculated DN300	1 pump per DN300	in ng
Pipe Section 2	dr ₁ =	bee accurate internal diameter	Nominal duty flow	Calculated	1 pump per	·
Pipe Section 2 Pipe size		Dee acurate internal diameter from tables	Nominal duty flow DN300	Calculated DN300	1 pump per DN300	mm
Pipe Section 2 Pipe size		bee accurate internal diameter from tables	Nominal duty flow DN300 325	Calculated DN300 325	1 pump per DN300 325	mm m
Pipe Section 2 Pipe size Inside Diameter Area	$d_2 = D_2$	Decret curate internal diameter from tables d_2 000 $TI / 4 \times D_2^2$	Nominal duty flow DN300 325 0.325 0.083	Calculated DN300 325 0.325 0.083	1 pump per DN300 325 0.325 0.083	mm m
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow	$d_2 = D_2$	Dee accurate internal diameter from tables d ₂ ,000 <i>II</i> / 4 x D ₂ ² Default from Design Inputs	Nominal duty flow DN300 325 0.325 0.083	Calculated DN300 325 0.325 0.083	1 pump per DN300 325 0.325 0.083	mm m m²
Pipe Section 2 Pipe size Inside Diameter Area	$d_2 = D_2$	Decret curate internal diameter from tables d_2 000 $TI / 4 \times D_2^2$	Nominal duty flow DN300 325 0.325 0.083	Calculated DN300 325 0.325 0.083	1 pump per DN300 325 0.325 0.083 2 385.200	mm m m²
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source	$d_2 = D_2 + D_2 $	Default from Design Inputs Default from previous section	Nominal duty flow DN300 325 0.325 0.083 2 554.400	Calculated DN300 325 0.325 0.083 2 662.400	1 pump per DN300 325 0.325 0.083 2 385.200	mm m m² m³/hr m3/hr
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station	$d_2 = $ D_2 $A_2 = $ $Q_2 = $	Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc	Nominal duty flow DN300 325 0.325 0.083	Calculated DN300 325 0.325 0.083	1 pump per DN300 325 0.325 0.083 2 385.200	mm m ² m ³ /hr m ³ /hr
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source	$d_2 = D_2 + D_2 $	Default from Design Inputs Default from previous section Use for multiple stations, dosing	Nominal duty flow DN300 325 0.325 0.083 2 554.400	Calculated DN300 325 0.325 0.083 2 662.400	1 pump per DN300 325 0.325 0.083 2 385.200 385.200	mm m m ² m ³ /hr m ³ /hr m ³ /h L/s
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$d_2 =$ D_2 $A_2 =$ $Q_2 =$ $Q_2 =$ $V_2 =$	Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290	mm m ² m ³ /hr m ³ /hr L/s m/sec
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section	$d_2 =$ D_2 $A_2 =$ $Q_2 =$ $Q_2 =$ $Q_2 =$	Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0	mm m ² m ³ /hr m ³ /hr L/s m/sec mm
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$d_2 =$ D_2 $A_2 =$ $Q_2 =$ $Q_2 =$ $V_2 =$	Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0	mm m ² m ³ /hr m ³ /hr L/s m/sec
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity	$d_2 =$ D_2 $A_2 =$ $Q_2 =$ $Q_2 =$ $V_2 =$	bee absurate internal diameter from tables d_2 , 000 $TI / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $V_2 \times D_2$	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0	mm m ² m ³ /hr m ³ /hr L/s m/sec mm
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $Q_{2} =$ $Q_{2} =$ $V_{2} =$ $k_{2} =$ $Re_{2} =$	be accurate internal diameter from tables d_2 , 000 $TI / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $V_2 \times D_2$ KV	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0	mm m ² m ³ /hr m ³ /hr L/s m/sec mm
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow matching	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $Q_{2} =$ $Q_{2} =$ $K_{2} =$ $Re_{2} =$ $Re_{2} =$ any be conside	bee accurate internal diameter from tables d_2 , 000 $TT / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $V_2 \times D_2$ KV red turbulent	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0 0 530624	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 633992	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 368680	mm m ² m ³ /hr m ³ /hr L/s m/sec mm
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $q_{2} =$ $V_{2} =$ $k_{2} =$ $Re_{2} =$ ay be conside =	be accurate internal diameter from tables d_2 , 000 $TI / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $V_2 \times D_2$ KV	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0	mm m ² m ³ /hr m ³ /hr L/s m/sec mm
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow ma Friction factor f ₂ (Swamee & Jam modified CW ear)	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $Q_{2} =$ $V_{2} =$ $k_{2} =$ $Re_{2} =$ $Re_{2} =$ $log (k)$	Default from Design Inputs Default from Design Inputs Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $\frac{V_2 \times D_2}{KV}$ red turbulent 0.25 $(2/3.7/D2 + 5.74/Re2^0.9))^2$	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0 0 530624 0.013	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0 368680 0.014	mm m ² m ³ /hr m ³ /h L/s m/sec mm m
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is at ove 2500 therefore flow ma Friction factor	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $q_{2} =$ $V_{2} =$ $k_{2} =$ $Re_{2} =$ ay be conside =	Default from Design Inputs Default from Design Inputs Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $\frac{V_2 \times D_2}{KV}$ red turbulent 0.25 $2/3.7/D2 + 5.74 / Re2^{n}0.9$)) ² $f_2 \times 100 \times V_2^2$	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0 0 530624	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 633992	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0 368680 0.014	mm m ² m ³ /hr m ³ /hr L/s m/sec mm
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow may Friction factor f ₂ (Swamee & Jan modified CW equ.)	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $Q_{2} =$ $V_{2} =$ $K_{2} =$ $Re_{2} =$ $Re_{2} =$ $(log (k) + HG_{2} =$	Default from Design Inputs Default from Design Inputs Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $\frac{V_2 \times D_2}{KV}$ red turbulent 0.25 $2/3.7/D2 + 5.74/Re2^{-0.9}))^2$ $\frac{f_2 \times 100 \times V_2^2}{D_2 \times 2 \times 9}$	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0 0 530624 0.013	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0 368680 0.014	mm m ² m ³ /hr m ³ /h L/s m/sec mm m
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow ma Friction factor f ₂ (Swamee & Jam modified CW ear)	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $Q_{2} =$ $V_{2} =$ $k_{2} =$ $Re_{2} =$ $Re_{2} =$ $log (k)$	Default from Design Inputs Default from Design Inputs Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $\frac{V_2 \times D_2}{KV}$ red turbulent 0.25 $2/3.7/D2 + 5.74/Re2^{-0.9}))^2$ $\frac{f_2 \times 100 \times V_2^2}{D_2 \times 2 \times 9}$	Nominal duty flow DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0 0 530624 0.013	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0 368680 0.014	mm m ² m ³ /hr m ³ /h L/s m/sec mm m
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is above 2500, therefore flow may Friction factor (Swamee & Jein modified CW eeu) Hydraulic gradient Quantity 4 m of Pipe length 1 x Teein line	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $Q_{2} =$ $V_{2} =$ $k_{2} =$ $Re_{2} =$ $Re_{2} =$ $(log (k) + G_{2} =$ $k value$	bee accurate internal diameter from tables d_2 , 000 $TI / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $V_2 \times D_2$ KV red turbulent 0.25 $22/3.7/D2 + 5.74/Re2^{-0.9}))^2$ $f_2 \times 100 \times V_2^2$ $D_2 \times 2 \times g$ Use $x HG_2/100$ 1.6 per fitting $x V_2^2/2/g$	Nominal duty flow DN300 325 0.325 0.083 2 2 554.400 154.000 1.856 0 0 0 0 0 0 0 0 0 0 0 0 0	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013 0.968 0.968	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0 368680 0.014 0.361	mm m ² m ³ /hr m ³ /h L/s m/sec mm m m m
Pipe Section 2 Pipe size Inside Diameter Area Number of streams for total flow Flow for this pump station Additional flows from another source Total flow for this pipe section Velocity Pipe Wall Roughness Reynolds number Reynolds number is attove 2500, therefore flow may Friction factor f ₂ (Swamee & Jein modified CW eet) Hydraulic gradient Quantity 4 m of Pipe length	$d_{2} =$ D_{2} $A_{2} =$ $Q_{2} =$ $Q_{2} =$ $V_{2} =$ $k_{2} =$ $Re_{2} =$ $Re_{2} =$ $(log (k) + G_{2} =$ $k value$	bee accurate internal diameter from tables d_2 000 $TI / 4 \times D_2^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_2/3.6$ Q_2 $A_2 \times 3600$ See attached worksheet $V_2 \times D_2$ KV red turbulent 0.25 $2/3.7/D2 + 5.74/Re2^0.9$)) ² $f_2 \times 100 \times V_2^2$ $D_2 \times 2 \times g$ ue $x HG_2/100$	Nominal duty flow DN300 325 0.325 0.083 2 2 554.400 154.000 1.856 0 0 0 0 0 0 0 0 0 0 0 0 0	Calculated DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013 0.968 0.968	1 pump per DN300 325 0.325 0.083 2 385.200 107.000 1.290 0 0 368680 0.014 0.361	mm m ² m ³ /hr m ³ /h L/s m/sec mm m m m m m m m m m

Sub total

$dP_2 =$ Sum of friction losses	0.344	0.490	0.167 m liq
---------------------------------	-------	-------	-------------

3.2 Discharge

Pipe Section 5	Pump Discharge			Nominal duty flow	Calculated	1 pump per
Pipe size	DICL?	-		DN250	DN250	DN250 mm
Inside Diameter		<i>d</i> ₅ =	Use accurate internal diameter from tables	266	266	266 mm
		D ₅ =	d ₅ / 1000	0.266	0.26	0.266 m
Area		A 5 =	Π / 4 x D ₅ ²	0.056	0,056	9.056 m² area
					\leq)
Number of streams fo	r total flow	<i>S</i> ₅ =	Default from Design Inputs	4	42	2
Flow for this pump sta	ation		Default from previous section	277.200	381.200	385.200 m ³ /hr
Additional flows from	another source		Use for multiple stations, dosing		\bigcirc	m3/hr
Total flow for this pipe		0	points etc	277.800	331.200	285 200 m ³ /b
Total flow for this pipe		Q ₅ =	Q ₅ /3.6	77.000	92.000	385.200 m³/h 107.000 L/s
Volooity		q ₅ = V ₅ =	\underline{Q}_5 3.8	386	1.656	1.925 m/sec
Velocity		<i>v</i> ₅ =	$\frac{\omega_5}{A_5} \times 3600$	1.300	1.000	1.925 III/Sec
Pipe Wall Roughness		k _	A ₅ x 3000		3	3 mm
Pipe wall Roughness		k ₅ =		0.003	0.003	0.003 m
				0.003	0.003	0.003 111
Reynolds number		Re ₅ =	$V_5 \times D_5$	324159	387307	450455
neynolds hamber		110 5 -	$\frac{\mathbf{v}_{5}}{\mathbf{k}\mathbf{v}}$		00/00/	400400
Revnolds number is a	bove 2500, therefore flow m	av he consider		\sim		
Friction factor	· · · · · ·	5 =	0.25	0.040	0.040	0.040
(Swamee & Jain mod		-	5/3.7/D5+5.74/Fe5^0.9	0.040	0.040	0.040
(Owaniee & bain mou	med Ow equ.)	(109 (1	0, 0.1, 00 + 0.14, 110 0.01	/		
Hydraulic gradient		HG ₅ =	$f_5 \times 100 \times V_5^2$	1.463	2.087	2.820 m/100 m
riyulaallo gradient		1105 -	$D_5 \times 2 \times g$	1.400	2.007	2.020 m/100 m
Quantity		k valı	// 7.2			
4 m of Pipe le	nath	it van	x HG ₅ / 100	0.059	0.083	0.113 m liq
· · ·	eck conventional	2	.4 per fitting $x V_5 2/g$	0.235	0.335	0.453 m liq
1 x Valve - Gat			$\frac{1}{2}$ per fitting $\times V_5^2 / 2 / g$	0.235	0.028	0.038 m liq
1 x Elbow Sho		U	1 per fitting $x V_5^2/2/g$	0.020	0.140	0.189 m liq
1 x Tee	- in line	0	.6 per fitting $\times V_5^2/2/g$	0.059	0.084	0.113 m liq
Sub total		$dP_5 =$	Sum of friction losses	0.000	0.670	0.906 m liq
Sub lolai		ur 5 =	Sun of inclion losses	0.470	0.070	0.900 1111q
Pipe Section 6						
	Pump station header	Call		Nominal duty flow	Calculated	1 pump per
•	Pump station header	SZ (\bigcirc	Nominal duty flow	Calculated	1 pump per
Pipe size	Pump station header DICL?			DN300	DN300	DN300 mm
•		2	Use accurate internal diameter from tables	· · · ·		1 10
Pipe size			▼	DN300	DN300	DN300 mm
Pipe size			from tables	DN300 325	DN300 325	DN300 mm 325 mm
Pipe size Inside Diameter			from tables d ₆ / 1000	DN300 325 0.325	DN300 325 0.325	DN300 mm 325 mm 0.325 m
Pipe size Inside Diameter	DICL?		from tables d ₆ / 1000	DN300 325 0.325	DN300 325 0.325	DN300 mm 325 mm 0.325 m
Pipe size Inside Diameter Area	DICL?		from tables <i>d</i> ₆ / 1000 <i>I</i> / 4 x D ₆ ²	DN300 325 0.325 0.083	DN300 325 0.325 0.083	DN300 mm 325 mm 0.325 m 0.083 m ² area
Pipe size Inside Diameter Area Number of streams fo	DICL?		from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing	DN300 325 0.325 0.083 2	DN300 325 0.325 0.083 2	DN300 mm 325 mm 0.325 m 0.083 m ² area
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from	DICL?))	from tables d_6 / 1000 Π / 4 x D_6^2 Default from Design InputsDefault from previous section	DN300 325 0.325 0.083 2 554.400	DN300 325 0.325 0.083 2 662.400	DN300 mm 325 mm 0.325 m 0.083 m ² area 2 385.200 m ³ /hr m3/hr
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta	DICL?	Q ₆ =	from tables d_6 / 1000 Π / 4 x D_6^2 Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc	DN300 325 0.325 0.083 2 554.400 554.400	DN300 325 0.325 0.083 2 662.400 662.400	DN300 mm 325 mm 0.325 m 0.083 m ² area 2 385.200 m ³ /hr m3/hr 385.200 m ³ /h
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe	DICL?	Q ₆ = q ₆ =	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$	DN300 325 0.325 0.083 2 554.400 554.400 154.000	DN300 325 0.325 0.083 2 662.400 184.000	DN300 mm 325 mm 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from	DICL?	Q ₆ =	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6	DN300 325 0.325 0.083 2 554.400 554.400	DN300 325 0.325 0.083 2 662.400 662.400	DN300 mm 325 mm 0.325 m 0.083 m ² area 2 385.200 m ³ /hr m3/hr 385.200 m ³ /h
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity	DICL?	$Q_6 = q_6 = V_6 = V_6 = Q_6 $	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$	DN300 325 0.325 0.083 2 554.400 154.000 1.856	DN300 325 0.325 0.083 2 662.400 184.000 2.218	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /h 107.000 L/s 1.290 m/sec
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe	DICL?	Q ₆ = q ₆ =	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6	DN300 325 0.325 0.083 2 554.400 154.000 1.856 0	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0	DN300 mm 325 mm 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity	DICL?	$Q_6 = q_6 = V_6 = V_6 = Q_6 $	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc $Q_6 / 3.6$ \underline{Q}_6 $A_6 \times 3600$	DN300 325 0.325 0.083 2 554.400 154.000 1.856	DN300 325 0.325 0.083 2 662.400 184.000 2.218	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /h 107.000 L/s 1.290 m/sec
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness	DICL?	$Q_6 = q_6 = Q_6 = V_6 = K_6 $	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet	DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 0	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr m3/hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity	DICL?	$Q_6 = q_6 = V_6 = V_6 = Q_6 $	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\underline{V}_6 \times D_6$	DN300 325 0.325 0.083 2 554.400 154.000 1.856 0	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0	DN300 mm 325 mm 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number	DICL?	$Q_6 =$ $q_6 =$ $V_6 =$ $K_6 =$ $Re_6 =$	from tables d_6 / 1000 II / 4 x D ₆ ² Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc Q_6 / 3.6 Q_6 A_6 x 3600See attached worksheet \underline{V}_6 x D ₆ KV	DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 0	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr m3/hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number Reynolds number is a	DICL?	$Q_6 =$ $q_6 =$ $V_6 =$ $k_6 =$ $Re_6 =$ hay be consider	from tables d_6 / 1000 II / 4 x D ₆ ² Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc Q_6 / 3.6 Q_6 A_6 x 3600 See attached worksheet V_6 x D ₆ KV red turbulent	DN300 325 0.325 0.083 2 554.400 154.400 154.000 1.856 0 0 530624	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6333992	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m 368680
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number Reynolds number is a Friction factor	DICL?	$Q_{6} =$ $q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ hay be consider $_{6} =$	from tables d_6 / 1000 II / 4 x D ₆ ² Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc Q_6 / 3.6 Q_6 A_6 x 3600 See attached worksheet V_6 x D ₆ KV red turbulent 0.25	DN300 325 0.325 0.083 2 554.400 154.000 1.856 0 0	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 0	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr m3/hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number Reynolds number is a	DICL?	$Q_{6} =$ $q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ hay be consider $_{6} =$	from tables d_6 / 1000 II / 4 x D ₆ ² Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc Q_6 / 3.6 Q_6 A_6 x 3600 See attached worksheet V_6 x D ₆ KV red turbulent	DN300 325 0.325 0.083 2 554.400 154.400 154.000 1.856 0 0 530624	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6333992	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m 368680
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number Reynolds number Friction factor (Swamee & Jain mod	DICL?	$Q_{6} =$ $q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ hay be consider $c_{6} =$ $(log (k))$	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6 \times D_6}{KV}$ ed turbulent 0.25 $6/3.7 / D6 + 5.74 / Re6^0.9))^2$	DN300 325 0.325 0.083 2 554.400 154.400 154.000 1.856 0 0 530624 0.013	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m 368680 0.014
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number Reynolds number is a Friction factor	DICL?	$Q_{6} =$ $q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ hay be consider $_{6} =$	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design InputsDefault from previous sectionUse for multiple stations, dosingpoints etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V}{6} \times D_6$ KV red turbulent 0.25 $6 / 3.7 / D6 + 5.74 / Re6^0.9))^2$ $f_6 \times 100 \times V_6^2$	DN300 325 0.325 0.083 2 554.400 154.400 154.000 1.856 0 0 530624	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6333992	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m 368680
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from A Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number Reynolds number Friction factor (Swamee & Jain mod Hydraulic gradient	DICL?	$Q_{6} =$ $q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ $Re_{6} =$ $(log (k))$ $HG_{6} =$	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6 \times D_6}{KV}$ red turbulent 0.25 $6 / 3.7 / D6 + 5.74 / Re6^0.9$)) ² $\frac{f_6 \times 100 \times V_6^2}{D_6 \times 2 \times g}$	DN300 325 0.325 0.083 2 554.400 154.400 154.000 1.856 0 0 530624 0.013	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m 368680 0.014
Pipe size Inside Diameter Area Number of streams fo Flow for this pump sta Additional flows from Total flow for this pipe Velocity Pipe Wall Roughness Reynolds number Reynolds number Friction factor (Swamee & Jain mod	DICL?	$Q_{6} =$ $q_{6} =$ $V_{6} =$ $k_{6} =$ $Re_{6} =$ $Re_{6} =$ $(\log k)$	from tables $d_6 / 1000$ $II / 4 \times D_6^2$ Default from Design Inputs Default from previous section Use for multiple stations, dosing points etc $Q_6 / 3.6$ Q_6 $A_6 \times 3600$ See attached worksheet $\frac{V_6 \times D_6}{KV}$ red turbulent 0.25 $6 / 3.7 / D6 + 5.74 / Re6^0.9$)) ² $\frac{f_6 \times 100 \times V_6^2}{D_6 \times 2 \times g}$	DN300 325 0.325 0.083 2 554.400 154.400 154.000 1.856 0 0 530624 0.013	DN300 325 0.325 0.083 2 662.400 184.000 2.218 0 0 6633992 0.013	DN300 mm 325 m 0.325 m 0.083 m ² area 2 385.200 m ³ /hr 385.200 m ³ /h 107.000 L/s 1.290 m/sec 0 mm 0 m 368680 0.014

Sub total		<i>dP</i> ₆ =	Sum of friction losses	0.028	0.039	0.014 m liq
Pipe Section 7	Rising Main			Nominal duty flow	Calculated	1 pump per
Pipe size	poly			DN630	DN630	DN630 mm
Inside Diameter	μοιγ	d ₇ =	Use accurate internal diameter from tables	512.6	512.6	512.6 mm
		D ₇ =	d ₇ / 1000	0.5126	0.5126	0.5126 m
Area		A ₇ =	Π / 4 x D ₇ ²	0.206	0.206	0.206 m² area
Number of streams for	r total flow	c	Default from Design Inputs	4	\square	
		<i>S</i> ₇ =	· · ·	1100.000	1004000	
Flow for this pump sta			Default from previous section	1108.800	1324,800	770.400 m³/hr
Additional flows from a	another source		Use for multiple stations, dosing points etc			m3/hr
Total flow for this pipe	section	Q ₇ =		1108.800	1324.800	770.400 m³/h
		$q_7 =$	Q ₇ /3.6	308.000	368.000	214.000 L/s
Velocity		$V_7 =$	\underline{Q}_7	1.492	4.783	1.037 m/sec
Volooity		• / -	<u>A</u> ₇ x 3600			1.007 11/000
Pipe Wall Roughness		k ₇ =	See attached worksheet			0 mm
r ipe wai nougriness		K7 =				0 m
						0 III
Reynolds number		De	K × D		802021	467500
Reynolds number		Re 7 =	$V_7 \times D_7$	072855	803931	467503
			KV			
	bove 2500, therefore flow may				0.040	0.010
Friction factor	f ₇ =		0.25	0.012	0.012	0.013
(Swamee & Jain modi	fied CW equ.)	(log (k7	/ 3.7 / D7 + 5.74 / Re7^0.9)) ²	$\langle \rangle$		
Hydraulic gradient		HG 7 =	$f_7 \times 100 \times V_7^2$	0.275	0.381	0.142 m/100 m
			$D_7 \times 2 \times g$	/		
Quantity		k value				
92 m of Pipe ler	-		x HG ₇ / 100	0.253	0.350	0.130 m liq
1 x Enlargemer	nt Sudden		per fitting x V $_{7}^{2}$ g	0.114	0.162	0.055 m liq
Sub total		$dP_7 =$	Sum of friction losses	0.367	0.512	0.185 m liq
			\sim			
			$\mathcal{A}(\mathbb{N})$	Nominal duty flow on test	Calculated	1 pump per clarifier
Total Dynamic Losse	S			ontest		Ciamiei
Friction loss in suction	pipework					
Pipe Section 1	Not used	dP ₁ =		0.313	0.447	0.151 m liq
Pipe Section 2	0	dP ₂	$\mathcal{N}_{\mathbf{v}}$	0.344	0.490	0.167 m liq
Total		SHO =>	dP_{1} $dP_{2} + dP_{3} + dP_{4}$	0.657	0.937	0.319 m liq
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\bigcirc$			
Friction loss in dischar	rge pipework	$\bigcirc$	>			
Pipe Section 5	Pump Discharge	$dR_5 = $		0.470	0.670	0.906 m liq
Pipe Section 6	Pump station header	dPs		0.028	0.039	0.014 m liq
Pipe Section 7	Rising Main	dP=		0.367	0.512	0.185 m liq
Total		DHd =	$dP_5 + dP_6 + dP_7 + dP_8 + dP_9 +$	0.864	1.221	1.106 m liq
		2		Nominal duty flow	Calculated	1 pump per
Summary	$\sim$	))		on test		clarifier
Safety margin on dyna		dP% =		5.00%	5.00%	5.00%
Suction dynamic losse		ur % = SHd% =	(1 + dp%) x SHd	0.690	0.984	0.334 m liq
Discharge dynamic los	sses 🔀	DHd% =	(1 + dp%) x DHd	0.907	1.282	1.161 m liq
Total dynamic losses		Hd% =	SHd% + Dhd%	1.598	2.266	1.496 m liq
Total suction head	$\langle \langle \rangle \rangle$	TSUa -	SHs - SHd%	4.020	3.726	4.376 m lia a
i otal suction nead	XCV	TSHg =	งกร - งกน%	4.020	3.120	4.376 m liq g
Total required discharg	ge head	TDHg =	DHs + DHd%	8.937	9.312	9.191 m liq g
Calculated Differential	Nead Redurements	DHr =	TDHg - TSHg	4.918	5.586	<b>4.816</b> m liq
			DHr x Dens / Dens _{H2O}	4.918	5.586	<b>4.816</b> m H ₂ O
K )L	$\sim$					
				Nominal duty flow	Calculated	1 pump per
NPSH Available	(Assuming elevation & veloc	nty head neglig	gible)	on test		clarifier
NPSHA Available		NPSHa =	101.3/Densx1000/9.81+TSHg	14.346	14.052	14.702 m liq
						- ··· ··•

4.

5.

6.

Calculation Conversion of the	
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--

#### RAS PUMPS

Performar		Resulting from V	SD Speeds	6	1	Existing N1	N2	N3			Sy	/stem Curve	Default figures f	rom Pump Sizing	spreadsht)
Speed					5		0	0			Static h	ead [m H2O]	3.32	3.32	3.32
Flow multi Head Multi	iplier				(1	12/N1 N2/N1) ²	0 0	0 0			Duty h	uty flow [L/s] ead [m H2O]	77 4.917656153	92 5.586308398	107 4.815739357
Power Mul						V2/N1) ³	0	0				Coefficient	0.000269465	0.000267759	0.000130644
F	Flow at 50	Head at 50	Power at 50	Eff at 50	Flow at 0	Head at 0	Power at 0	Eff at #REF!	0	Head at 0	Power at 0	Eff at 0	Nominal duty flow on test	Calculated System Curve	1 pump per clarifier System
	[L/s] 0	[m H2O] 9.08	[kW] 1	[%] 0.00%	[L/s] 0.00	[m H2O] 0.00	[kW] 0.00	[%] 0.00%	[L/s] 0	[m H2O] 0.00	[kW] 0.00	[%] 0.00%	System Curve 3.67 3.61	3.52	Curve 3.32
	32 60.2	8.15 7.11	1	255.84% 419.89%	0.00	0.00	0.00	255.84% 419.89%	0	0.00	0.00	255.84% 419.89%	3.60 4.30	3.59	3.45 3.79
	77.6 95.6	6.23 5.39	1	474.26% 505.49%	0.00	0.00	0.00	474.26% 505.49%	0	0.00	0.00	474.26% 505.49%		4.93 5.77	4.11 4.51
	105.7 116.8	4.88 4.24	1	506.02% 485.82%	0.00	0.00	0.00	506.02% 485.82%	0	0.00	0.00	506.02% 485.82%	7.00	6.31	4.78 5.10
	116.8 116.8	4.24 4.24	1	485.82% 485.82%	0.00	0.00	0.00	485.82% 485.82%	0	0.00	0.00	485.82% 485.82%			5.10 5.10
	116.8	4.24	1	485.82%	0.00	0.00	0.00	485.82%	0	0.00	0.00	485,82%		6.97	5.10
	10				GR	APHS ARE	SHOWN RE	ELATIVE TO	D FLOW FRO	M ONE PUM	P				
												$\square$	$\sim$		
	9										$\langle$	$\mathbb{N}$			
	8										$( \langle \rangle )$			<b></b> 0	
											$\sim$			Nominal duty System Curv Calculated S	ystem Curve
	7										$\nearrow$	$\diamond$		<ul> <li>1 pump per of Curve</li> <li>Nominal duty</li> </ul>	larifier System
	6										$\sim$			<ul> <li>Calculated</li> </ul>	
	Ů								>	1 9					
Head	5														
1									0.						
	4								~~~	$\checkmark$					
	3								$\sum$						
										$\Rightarrow$					
	2								$\langle \langle \rangle \rangle$	>					
	1							C	$\sim \bigcirc$						
								20							
	o 📥		20		40	60			$\searrow$	100	12	20	140		
			20		-0				· · · ·	100			140		
	1.2			•					•	•	•				
	0.8						$-\bigcirc$	$\sim$						<b></b> 50 <b></b>	-0
Power	0.6							)						<b></b> 0	
	0.2					¥	$\langle -$								
	0 🛕 0		20		40	C		80		100	12	0	140		
					~	2	Flow								
						//	>								
	600.00%														
	500.00%								-						
	I			•		))									-0
lcy.	400.00%														
Efficiency	300.00%				$\bowtie$									<b>—•</b> 0	
"	•			SX											
	200.00%			$\sim$	<b>5</b>										
				$\frown$											
	100.00%			$\checkmark$											
	0.00%		$\wedge$	$\searrow$											
	0	0	X		40	60		80		100	12	0	140		
		$\bigcirc$	$\swarrow$	רש'			Flow								
		$\ll \mathbb{P}$	$\rightarrow$												
			7												



# APPENDIX B: VICTORIA POINT WWTP – NET PRESENT COST ANALYSIS INPUT SHEETS

#### NPC Analysis Tool

## 40 Year NPV = \$10313377 15 Year NPV = \$9249373

Project Number	J1904				
Project Name		Victoria Point STP Upgrades			
Calculation Number	1				
Calculation Name		Whole-of-Life Cost of Servicing Developments			

 $\mathcal{V}$ 

Current Financial Year	20/21	Note: Defines start year for project (Year Zero) on Financial Year Basis (eg. 04/05)	
Discount Rate	7.00%	( )	× ×
Income Tax Rate	0%	Note: Positive cash flows indicate revenue. Negative cash flows indicate expenditure.	- 11 -

Capital Expend	Depreciation (Linear)			
Item	Cost	Year of Project	Years	Escalation
Post-Anoxic /reaeration Tank, Additional				
Clarifier and Additional CCT	\$4,256,000	2	0	
	\$4,256,000	3	0	

	Fixed Oper	ating Expenditure	e	
Item	Cost	Start Year	End Year	Escalation
Maintenance	\$25,068	3	40	2.50%
Electrical	\$12,500	3	40	2.50%
				N

Note: Start Year is year of first cash flow. End Year is last year of cash flow.

	Variable Ope	erating Expenditu	ire 🖉	$\sim$
Item	\$/ML	Start Year	End Year	Escalation
Electrical Variable	\$70.24	3	40	2.50%
Chemical Variable	\$30.25	3	40	2.50%
Haulage Variable	\$93.39	3	40	2.50%
				$\mathbf{\nabla}$
				3

1		Projec	ed Productio	n								
	91 L/EP/d											
1	Additional											
	Year	Year No.	Population	Flow (ML/d)								
	20/21	≥ ○	イ	0.00								
	21/22	$\bigcirc$	434	0.08								
	22/23	16 0	677	0.13								
	23/24	$\sqrt{3}$	1,764	0.34								
	24/25		2,850	0.54								
	25/26	5	3.937	0.75								
	20/2	6	5,023	0.96								
	27/28	7	6,054	1.16								
	28 29	8	6,242	1.19								
	29/39	9	6,431	1.23								
	30/31	10	6,619	1.26								
Δ	31/32	11	6,807	1.30								
1	32/33	12	6,888	1.32								
	33/34	13	6,970	1.33								
	34/35	14	7,052	1.35								
	35/36	15	7,134	1.36								
	36/37	16	7,215	1.38								
1	37/38	17	7,215	1.38								
	38/39	18	7,215	1.3781								
	39/40	19	7,215	1.38								
	40/41	20	7,215	1.38								
	41/42	21	7,215	1.38								
	42/43	22	7,215	1.38								
	43/44	23	7,215	1.38								
	44/45	24	7,215	1.38								
	45/46	25	7,215	1.38								
	46/47	26	7,215	1.38								
	47/48	27	7,215	1.38								
	48/49	28	7,215	1.38								
	49/50	29	7,215	1.38								
	50/51	30	7,215	1.38								
	51/52	31	7,215	1.38								
	52/53	32	7,215	1.38								
	53/54	33	7,215	1.38								
	54/55	34	7,215	1.38								
	55/56	35	7,215	1.38								
	56/57	36	7,215	1.38								
	57/58	37	7,215	1.38								
	58/59	38	7,215	1.38								

#### NPC Analysis Tool

## 40 Year NPV = \$10682963 15 Year NPV = \$9419684

Project Number	J1904					
Project Name		Victoria Point STP Upgrades				
Calculation Number	1					
Calculation Name	Whole-of-Life Cost of Servicing Developments					

 $\diamond$ 

. .

 $\mathcal{D}$ 

Current Financial Year	20/21	Note: Defines start year for project (Year Zero) on Financial Year Basis (eg. 04/05)	
Discount Rate	7.00%		<b>^</b>
Income Tax Rate	0%	Note: Positive cash flows indicate revenue. Negative cash flows indicate expenditure.	51

Capital Expend	Capital Expenditure								
Item	Cost	Year of Project	Years	Escalation					
Post-Anoxic /reaeration Tank, Additional									
Clarifier and Additional CCT	\$4,256,000	2	0						
	\$4,256,000	3	0						

	Fixed Oper	ating Expenditure	)	
Item	Cost	Start Year	End Year	Escalation
Maintenance	\$25,068	3	40	2.50%
Electrical	\$12,500	3	40	2.50%
				M.

Note: Start Year is year of first cash flow. End Year is last year of cash flow.

	Variable Ope	erating Expenditu	ure /	$\sim$
Item	\$/ML	Start Year	End Year	Escalation
Electrical Variable	\$70.24	3	40	2.50%
Chemical Variable	\$30.25	3	40	2.50%
Haulage Variable	\$143.68	3	40	2.50%
				$\mathbf{N}$
				3
			$\sim$	

1	Projected Production											
			191	L/EP/d								
1		$\sim$	Additional									
	Year	Year No.	Population	Flow (ML/d)								
	20/21	≥ ○	7	0.00								
	21/22	$\langle \rangle$	434	0.08								
	22/23	16 0	677	0.13								
	23/24	$\sqrt{3}$	1,764	0.34								
	24/25		2,850	0.54								
	25/26	5	3.937	0.75								
	20/2	6	5,023	0.96								
	27/28	7	6,054	1.16								
	28 29	8	6,242	1.19								
	29/39	9	6,431	1.23								
	30/31	10	6,619	1.26								
Λ	31/32	11	6,807	1.30								
4	32/33	12	6,888	1.32								
	33/34	13	6,970	1.33								
	34/35	14	7,052	1.35								
	35/36	15	7,134	1.36								
	36/37	16	7,215	1.38								
1	37/38	17	7,215	1.38								
	38/39	18	7,215	1.3781								
	39/40	19	7,215	1.38								
	40/41	20	7,215	1.38								
	41/42	21	7,215	1.38								
	42/43	22	7,215	1.38								
	43/44	23	7,215	1.38								
	44/45	24	7,215	1.38								
	45/46	25	7,215	1.38								
	46/47	26	7,215	1.38								
	47/48	27	7,215	1.38								
	48/49	28	7,215	1.38								
	49/50	29	7,215	1.38								
	50/51	30	7,215	1.38								
	51/52	31	7,215	1.38								
	52/53	32	7,215	1.38								
	53/54	33	7,215	1.38								
	54/55	34	7,215	1.38								
	55/56	35	7,215	1.38								
	56/57	36	7,215	1.38								
	57/58	37	7,215	1.38								
	58/59	38	7,215	1.38								



# APPENDIX C: VICTORIA POINT WWTP – COST ESTIMATES

Victoria Point Upgrades - Capital Cost Estimates for Upgrades to Service Developments - Post-Anoxic / Re-Aeration Zone Rev B, June 24, 2020

Item	Description	Anticipated Size		Dimensio		Qty /	Units	Rate	DJ	C Purchase	Installation	DJ	C Incl. Install
Post Anoxic/Reaeration Slab					624	9360						\$	-
	3 Personnel (\$250/day), 1												
	Excavator (\$2500/day), 1 Dump												
Excavation	Truck (\$1500/day)	1 machine 3 days				3	days	\$ 4,750.00	\$	14,250.00		\$	14,250.00
	Post Anoxic and Reaeration Zone -												
	Excluding Mixed Liquor Transfer												
Slab Concrete	Chamber (including toe)		39.5	7.7	0.5	144	m3	\$ 1,074.15	\$	155,174.39		\$	155,174.39
Slab and apron for access blower room			0.25	4.79	6.05	7	m3	\$ 1,074.15	\$	7,782.08		\$	7,782.08
Post Anoxic Zone Mixers									\$	-		\$	-
Cell no. 1 Mixer	249.6 kL @ 14.2 watts/m3	KSB 3.5 kW				1	ea	\$ 9,500.00	\$	9,500.00	\$ 3,135.00	\$	12,635.00
Cell no. 2 Mixer	249.6 kL @ 14.2 watts/m3	KSB 3.5 kW				1	ea	\$ 9,500.00	\$	9,500.00	\$ 3,135.00	\$	12,635.00
Cell no. 3 Mixer	249.6 kL @ 14.2 watts/m3	KSB 3.5 kW				1	ea	\$ 9,500.00	\$	9,500.00	\$ 3,135.00	\$	12,635.00
Post Anoxic/reaeration Exterior													
Walls													
Exterior Wall Concrete			44	4.8	0.5	105.48	m3	\$3,000.00		816,440.00		\$	316,440.00
Bioreactor Wall			32.5	2.8	0.25	22.75		\$ 3,000.00		68,250,00		\$	68.250.00
			02.0	2.0	0.20	22.70		\$ 0,0000	-	00,200.00		Ψ	00,200.00
Mixed Liquor Transfer Chamber								$\sim$	)				
Toe Cut Out	5 m cut, 0.5m thickness		5			5	m	\$ 490.00		2,000.00	\$ 660.00	\$	2,660.00
Penstock	Manually operated.		0.88	0.88		1	ea	\$10,409.44	\$		\$ 3,435.11	\$	13,844.55
Floor Slab			4.35	3.5	0.5	7.6125		\$ 1,024 15		8,176.97		\$	8,176.97
Exterior Walls			10.7	7.5	0.5	40.125	<b>p</b> 3	3,261.00		130,847.63		\$	130,847.63
Interior Wall			2.5	6.7	0.3	5.025	ms	\$ 3261.00 \$ 2,000.00	\$	16,386.53		\$	16,386.53
Mixed Liquor Duct			24	1.45	0.25	8.7	m3	\$ 2,000.00	\$	17,400.00		\$	17,400.00
Reaeration Cell and Swing Zone							$\left( \bigcap \right)$						
<b>~</b>		DN150 Spiral				_		)					
Aeration Pipework		Wound SS				15		\$ 680.00	\$	10,200.00	\$ 3,366.00	\$	13,566
		DN150 butterfly						,		-,			- /
Control Valves	Supply and Install	with actuator				1	ea	\$15,000.00	\$	15,000.00		\$	15,000
	~126 fine pore membrane disk							<i>,</i>	-	,		+	,
Diffusers	diffusers, fixed to floor					$\bigcirc$	ea	\$82,000	\$	82,000.00	\$27,060.00	\$	109,060
	500 Nm3/h Atlas Copco ZL2VSD						5	+,	-		+	+	,
Blowers	15 kW					2	ea	\$17,550.00	\$	35,100.00	\$11,583.00	\$	46,683
Blower building, including louvres						30		\$ 2,200.00		66,000.00	\$11,000.00	\$	66,000
blower building, meldaling louvres	Probe, mounting hardware,				$\sim ($		1112	φ 2,200.00	Ψ	00,000.00		Ψ	00,000
DO meter	controller box				0		ea	\$ 5,000.00	\$	5 000 00	\$ 1,650.00	\$	6,650
Mixed Liquor pipework modification	Two blockouts			0	$\checkmark$	2		\$ 2,500.00		5,000.00	φ 1,000.00	\$	5,000
Two stopboards for weir isolation.	2100 x 800, 2500 x 800					2		\$ 8,991.81			\$ 5,934.60	\$	23,918
Walkway	2100 x 800, 2300 x 800		28	19		33.6		\$ 290.00			\$ 3,215.52		12,960
Stairway			20	2		33.0	ea	\$ 3,000.00	Ψ ¢		\$ 990.00	⊅ \$	3,990
Relocate scum harvester					()7	1	ea	\$15,000.00	\$	15,000.00	ψ 990.00	э \$	15,000
				$\frown$	$\checkmark$	1	ea	φ10,000.00	φ	15,000.00		φ	15,000
Roadways		00				100		<b>•</b> • • • • • • • • • • • • • • • • • •	¢	0.750.00		¢	0 750
Sealed Roadway		30 m x 5 m			-	150		\$ 65.04		9,756.20		\$	9,756
Kerbing	Supply and Install	60 m	AL AL			60	m	\$ 45.38		2,722.66		\$	2,723
			( )						\$	-		\$	-
Service Water System Augmentation				•		30	m	\$ 80.00	\$	2,400.00		\$	2,400
Electrical at 13% of DJC for PA/RA Ta	nk		$\sim$		13%		\$1,289,451	\$ 167,629	ſ			\$	167,629

NEW WORKS =

1,289,451 \$

The second secon



Victoria Point Upgrades - Capital Cost Estimates for Upgrades to Service Developments - Additional Clarifier Rev B, June 24, 2020

tem													
	Description	Anticipated Size	Di	mensions		Qty /	Units		Rate	DJC Purchase	Installation	DJC In	icl. Install
Clear & grub		· · · ·	72	63		4536	m2	\$	6.00	\$ 27,216.00		\$	27,216.00
0								Ŧ	0.00	¢		۰ ۲	,
Mods to ML flow split										\$ -		\$	-
Pipe to new clarifier		960 OD DICL				68	m	\$	1,004.89	\$ 68,332.45	\$ 22,549.71	\$	90,882.16
Bends in pipe to new clarifier		960 DICL				2	ea	\$	6,062.31	\$ 12,124.62	\$ 4,001.12	\$	16,125.74
Nodify division in flowsplitter annulus, Removal of aluminium mixed liquor													
						1				¢ 11.000.00		¢	11 000 00
low distribution chamber cap	Concrete cut, live cut-in					I	ea			\$ 11,000.00		2	11,000.00
	Supply and Install Aluminium												
	Slidegate with spindle (clear opening												
Aluminium Slidegate	sides and bottom)		1500	2200		1	ea	¢ '	20,173.33	\$ 20,173.33	\$ 6,657.20	¢	26,830.53
iummum Snueyale	Sides and bollonn)		1000	2200		l	ea	₽ 4	20,173.33	\$ 20,173.33	\$ 0,007.20	¢	20,030.03
xtension to service water network and hose points						1	ea	\$	2,400.00	\$ 2,400.00		\$	2,400.00
lew Clarifier												Ŷ	~
	a											۵ ۵	-
Concrete Walls	Supply and Install	109.17m x 4.42m x 0.25 m	109.17	4.42	0.25	120.6	m3	\$	3,000.00	\$ 361,800.00		\$ 3	361,800,00
oncrete Wall Toe	Supply and Install	109.17 m x 1.7 m x 0.4 m	109.17	1.7	0.4	74.2	m3	\$	1,074.15	\$ 79,701.93		\$	79,70
Concrete Floor	Supply and Install	977.24 m2 x 0.15 m	977.24	0.15		146.6	m3	¢	1.074.15	\$ 157,470.39			57 470 39
					0.4			Ŷ				$\sim$	-
Concrete Path	Supply and Install	111.21 m x 0.9 m x 0.075 m	111.21	0.9	0.1	7.5	m3	\$	1,074.15	\$ 8,056.13			8,05613
ludge Cone Floor	Supply and Install	15.90 m2 x 0.35 m	15.9	0.35		5.6	m3	\$	3,261.00	\$ 18,261.60		\$	18,261.60
* · · · · · · · · · · · · · · · · · · ·											( )		
aundor Concrete		(111.0 m v 0.75 m v 0.05 m)											
aunder Concrete		(111.2 m x 0.75 m x 0.25 m) +					_	1.			1111	V	
	Supply and Install	(108.865 m x 0.5 m x 0.15 m)				29	m3	\$	3,261.00	\$ 94,569.0	$\overline{nn}$	\$	94,569.00
		(113.1 x 1.245)+(108.865 x											
aunder Epoxy Coating	1	0.5)+(111.2 x 0.6)+(108.856 x								S/ (( ))	<u>ון</u> ז		
aunuar Epony Coalling	Current and Install					011	- 0	¢	100.00		$\checkmark$	¢	F7 1F4 00
	Supply and Install	0.15)+(108.38 x 300)				311	m2	\$	183.88	\$ \$7,151,20			57,151.20
&I clarifier mechanism - weirs scrapers etc	Supply and Install			Т		1	ea	\$ 7	15,000.00	\$ 715,000.00		\$ 7	15,000.00
econdary effluent pipework (to main filter feed tank)		960 DICL	İ			67	m		104.88	\$ 67,827.56			67,327.56
coondary endone pipework (to main nitor rood tanky	3 Personnel (\$250/day), 1 Excavator	700 DIGE				07		Ψ	L MOTION	Ψ 01,021.00		Ψ	51,521.30
								$\sim$	$\langle \rangle \rangle$	$\mathbf{v}$			
xcavation, including placement and overburden to new batters for sound	(\$2500/day), 1 Dump Truck						0	(( )	1111	•			
nd visual screening	(\$1500/day)	1 machine 4 days	1017.87602	5		6	daya	\$	4,150.00	\$ 28,500.00		\$	28,500.00
5	(, , , , , , , , , , , , , , , , , , ,			0		-			$\mathcal{H}$				
roundwater Collection Manhole				#REF!			લા પ	$\sim$	~				
loor	Supply and Install		2.27		0.3	0.68		VX	1,074.15	\$ 731.50		\$	731.50
/alls - precast		6m donth	2.21		0.0			¢	1,850.00	\$ 5,550.00		¢	5,550.00
	Supply and Install	6m depth						\$	-			\$	
Grounwater drainage pipework	Supply and Install					104	( ) ک <i>ه</i> ر ( )	\$	70.11	\$ 7,291.29		\$	7,291.29
RAS Pump Station													
					-		•						
RAS pipework for RAS pump station		375 DICL			~~~	85.5	m	\$	573.33	\$ 49,019.89	\$ 14,705.97	Ŷ	63,725.85
												J.	
	Supply and Install				$\sim \prime \prime$			\$	1 07/ 15				22 825 60
Concrete slab	Supply and Install	6.4 m x 8.3 m x 0.4 m		0	$ \rightarrow h $	21.25	m3	\$	1,074.15	\$ 22,825.69			22,825.69
Concrete slab				C	A.		m3	\$		\$ 22,825.69		\$	
Concrete slab RAS Pumps	Supply and Install 190 L/s Duty/Assist/Standby	6.4 m x 8.3 m x 0.4 m		Ę (	$\mathcal{T}$				12,500.00	\$ 22,825.69 \$ 37,500.00	\$ 9,375.00	\$ \$	46,875.00
Concrete slab RAS Pumps				Ę	$\mathcal{D}$		m3			\$ 22,825.69 \$ 37,500.00	\$ 9,375.00	\$ \$	
ioncrete slab IAS Pumps IRV		6.4 m x 8.3 m x 0.4 m DN300		Ę (			m3 ea ea	\$	12,500.00 5,986.61	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84	\$ 9,375.00 \$ 4,489.96	\$ \$ \$	46,875.00 22,449.80
ioncrete slab IAS Pumps IRV solation Valves Suction		6.4 m x 8.3 m x 0.4 m DN300 DN300			$\mathcal{D}$		m3 ea ea ea	\$ \$	12,500.00 5,986.61 2,975.13	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34	\$ \$ \$ \$	46,875.00 22,449.80 11,156.72
concrete slab PAS Pumps IRV solation Valves Suction		6.4 m x 8.3 m x 0.4 m DN300		Ç (	$\mathcal{D}$		m3 ea ea	\$ \$	12,500.00 5,986.61 2,975.13	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34	\$ \$ \$ \$	46,875.00 22,449.80
ioncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge	190 L/s Duty/Assist/Standby	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250					m3 ea ea ea ea	\$	12,500.00 5,986.61 2,975.13 2,644.56	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42	\$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09
Concrete slab CAS Pumps IRV solation Valves Suction solation Valves Discharge CAS Flowmeter	190 L/s Duty/Assist/Standby Magflow	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250					m3 ea ea ea	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00	<ul> <li>\$ 22,825.69</li> <li>\$ 37,500.00</li> <li>\$ 17,959.84</li> <li>\$ 8,925.38</li> <li>\$ 7,933.67</li> <li>\$ 8,500.00</li> </ul>	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00
Concrete slab	190 L/s Duty/Assist/Standby	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250					m3 ea ea ea ea	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09
Concrete slab CAS Pumps IRV solation Valves Suction solation Valves Discharge CAS Flowmeter re and Post Flowmeter Isolation Valve	190 L/s Duty/Assist/Standby Magflow	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN250					m3 ea ea ea ea ea	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00	<ul> <li>\$ 22,825.69</li> <li>\$ 37,500.00</li> <li>\$ 17,959.84</li> <li>\$ 8,925.38</li> <li>\$ 7,933.67</li> <li>\$ 8,500.00</li> </ul>	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00
oncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In	190 L/s Duty/Assist/Standby Magflow	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375					m3 ea ea ea ea ea ea	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00
oncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In	190 L/s Duty/Assist/Standby Magflow	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN250					m3 ea ea ea ea ea	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00
oncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework	190 L/s Duty/Assist/Standby Magflow	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375					m3 ea ea ea ea ea ea	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00
oncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework toadways	190 L/s Duty/Assist/Standby Magflow Knifegate	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN0/CL					m3 ea ea ea ea ea ea m	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 59.93	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25
oncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework toadways ealed Roadway	190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN375 150 DN375					m3 ea ea ea ea ea m m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 59.93 65.04	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN375 150 DN375 150 DN375				21.25 3 3 3 3 1 2 20 20 75 30	m3 ea ea ea ea m m m2 m	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
ioncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework toadways ealed Roadway erbing	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN375 150 DN375 150 DN375					m3 ea ea ea ea ea m m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 59.93 65.04	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN375 150 DN375				21.25 3 3 3 3 1 2 20 20 75 30	m3 ea ea ea ea m m m2 m	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN375 150 DN375 150 DN375				21.25 3 3 3 3 1 2 20 20 75 30	m3 ea ea ea ea m m m2 m	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN375 150 DN375 150 DN375				21.25 3 3 3 3 1 2 20 20 75 30	m3 ea ea ea ea m m m2 m	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
Concrete slab CAS Pumps IRV solation Valves Suction solation Valves Discharge CAS Flowmeter	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN375 150 DN90CL 15 m X m 30 m 110 N 5 m				21.25 3 3 3 3 1 2 20 20 75 30	m3 ea ea ea ea m m m2 m	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
Concrete slab CAS Pumps Concrete slab CAS Pumps Concrete slab CAS Pumps CAS Flowmeter Care and Post Flowmeter Isolation Valve Com Pump Station Cut In Codways Coadways Coadways Coadways Coadway Coadw	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DNO(CL 15 m x 10.5 m 5 m x 13.5 m (1:3 batter				21.25 3 3 3 1 2 20 75 30 550	m3 ea ea ea ea ea m m2 m2 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
oncrete slab AS Pumps RV volation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN375 150 DN90CL 15 m X m 30 m 110 N 5 m			4.5	21.25 3 3 3 3 1 2 20 20 75 30	m3 ea ea ea ea m m m2 m	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
oncrete slab AS Pumps RV volation Valves Suction volation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip ill	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN00CL 15 m x 1 3 m 5 m x 13.5 m (1:3 batter slope)	45	6.75	4.5	21.25 3 3 3 3 1 2 20 20 75 30 550 550 1367	m3 ea ea ea ea ea m m2 m2 m2 m3	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 59.93 65.04 45.38 30.25	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 1,198.60 \$ 1,361.33 \$ 1,6638.49 \$ 1,6638.49 \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip II overage - Native trees, shrubs and hedges, mulched	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DNO(CL 15 m x 10.5 m 5 m x 13.5 m (1:3 batter			4.5	21.25 3 3 3 1 2 20 75 30 550	m3 ea ea ea ea ea m m2 m2 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,59.93 6,504 45.38	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33
oncrete slab AS Pumps RV volation Valves Suction volation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN20CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m	45	6.75	4.5	21.25 3 3 3 3 1 2 20 20 75 30 550 550 1367	m3 ea ea ea ea ea m m2 m2 m2 m3	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 59.93 65.04 45.38 30.25	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 1,198.60 \$ 1,361.33 \$ 1,6638.49 \$ 1,6638.49 \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49
increte slab iAS Pumps IRV isolation Valves Suction isolation Valves Discharge iAS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework isoladways ealed Roadway erbing iravel Roadway andscaped Nature Strips ast Nature Strip iII ioverage - Native trees, shrubs and hedges, mulched	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN00CL 15 m x 1 3 m 5 m x 13.5 m (1:3 batter slope)	45	6.75	4.5	21.25 3 3 3 3 1 2 20 20 75 30 550 550 1367	m3 ea ea ea ea ea m m2 m2 m2 m3	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 59.93 65.04 45.38 30.25	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 1,198.60 \$ 1,361.33 \$ 1,6638.49 \$ 1,6638.49 \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49
oncrete slab AS Pumps RV volation Valves Suction volation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched orth Nature Strip	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN00CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m (1:3 batter	45	6.75		21.25 3 3 3 3 1 20 20 20 75 30 550 550 1367 607.5	m3 ea ea ea ea m m2 m2 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 59.93 65.04 45.38 30.25	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 1,198.60 \$ 1,361.33 \$ 1,6638.49 \$ 1,6638.49 \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49
increte slab AS Pumps AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework coadways ealed Roadway erbing iravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched orth Nature Strip ill	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN20CL 15 m x 13.5 m 110 h x 5 m 5 m x 13.5 m 59 m x 13.5 m (1:3 batter slope)	45 45 59	6.75 6.75	4.5	21.25 3 3 3 3 1 2 20 75 30 550 1367 607.5 1792	m3 ea ea ea ea ea m m m2 m2 m2 m3 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 65.04 45.38 30.25 	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33 \$ 16,638,49 \$ 6,075,00 \$ - \$ 6,075,00 \$ - \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - - -
increte slab AS Pumps AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework coadways ealed Roadway erbing iravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched iverage - Native trees, shrubs and hedges, mulched	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN00CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m (1:3 batter	45	6.75		21.25 3 3 3 3 1 20 20 20 75 30 550 550 1367 607.5	m3 ea ea ea ea m m2 m2 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 59.93 65.04 45.38 30.25	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 4,878,10 \$ 1,361,33 \$ 16,638,49 \$ 6,075,00 \$ - \$ 6,075,00 \$ - \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - - - - -
increte slab AS Pumps AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework coadways ealed Roadway erbing iravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched iverage - Native trees, shrubs and hedges, mulched	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN20CL 15 m x 13.5 m 110 h x 5 m 5 m x 13.5 m 59 m x 13.5 m (1:3 batter slope)	45 45 59	6.75 6.75		21.25 3 3 3 3 1 2 20 75 30 550 1367 607.5 1792	m3 ea ea ea ea ea m m m2 m2 m2 m3 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 65.04 45.38 30.25 	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33 \$ 16,638,49 \$ 6,075,00 \$ - \$ 6,075,00 \$ - \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - - - - -
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched overage - Native trees, shrubs and hedges, mulched	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install Supply and Install	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN20CL 15 m x 13.5 m 110 h x 5 m 5 m x 13.5 m 59 m x 13.5 m (1:3 batter slope)	45 45 59	6.75 6.75		21.25 3 3 3 3 1 2 20 75 30 550 1367 607.5 1792	m3 ea ea ea ea ea m m m2 m2 m2 m3 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 65.04 45.38 30.25 	\$ 22,825,69 \$ 37,500,00 \$ 17,959,84 \$ 8,925,38 \$ 7,933,67 \$ 8,500,00 \$ 11,040,00 \$ 11,040,00 \$ 1,198,60 \$ 4,878,10 \$ 1,361,33 \$ 16,638,49 \$ 6,075,00 \$ - \$ 6,075,00 \$ - \$ -	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - - -
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched UNDRY MECH / ELECT / CIVIL WORKS	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install Supply and Install Supply and Install Road restoration for pipe trench road	6.4 m x 8.3 m x 0.4 m DN300 DN250 DN250 DN250 DN375 150 DN0/CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m (1:3 batter slope) 59 m x 13.5 m (1:3 batter	45 45 59 59	6.75 6.75 6.75 13.5	4.5	21.25 3 3 3 1 2 20 75 30 550 550 550 1367 607.5 1792 796.5	m3 ea ea ea ea ea m m2 m2 m2 m3 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49 \$ - \$ 6,075.00 \$ - \$ - \$ 7,965.00	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - 6,075.00 - 7,965.00
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched UNDRY MECH / ELECT / CIVIL WORKS	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install Supply and Install Road restoration for pipe trench road crossings	6.4 m x 8.3 m x 0.4 m DN300 DN300 DN250 DN250 DN250 DN375 150 DN20CL 15 m x 13.5 m 110 h x 5 m 5 m x 13.5 m 59 m x 13.5 m (1:3 batter slope)	45 45 59	6.75 6.75 6.75 13.5		21.25 3 3 3 1 2 20 75 30 550 550 550 1367 607.5 1792 796.5	m3 ea ea ea ea ea m m m2 m2 m2 m3 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 5,520.00 65.04 45.38 30.25 	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49 \$ - \$ 6,075.00 \$ - \$ - \$ 7,965.00	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - 6,075.00 - 7,965.00
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip ill overage - Native trees, shrubs and hedges, mulched UNDRY MECH / ELECT / CIVIL WORKS	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install Supply and Install Supply and Install Road restoration for pipe trench road	6.4 m x 8.3 m x 0.4 m DN300 DN250 DN250 DN250 DN375 150 DN0/CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m (1:3 batter slope) 59 m x 13.5 m (1:3 batter	45 45 59 59	6.75 6.75 6.75 13.5	4.5	21.25 3 3 3 1 2 20 75 30 550 550 550 1367 607.5 1792 796.5	m3 ea ea ea ea ea m m2 m2 m2 m3 m2 m3 m2	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49 \$ - \$ 6,075.00 \$ - \$ - \$ 7,965.00	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - 6,075.00 - 7,965.00
Concrete slab CAS Pumps CAS Pumps CAS Pumps CAS Plowmeter CAS Flowmeter	190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install Supply and Install Road restoration for pipe trench road crossings Includes restoration for entire work	6.4 m x 8.3 m x 0.4 m DN300 DN250 DN250 DN250 DN375 150 DN0/CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m (1:3 batter slope) 59 m x 13.5 m (1:3 batter	45 45 59 59	6.75 6.75 6.75 13.5	4.5	21.25 3 3 3 1 2 20 75 30 550 550 550 1367 607.5 1792 796.5 333	m3 ea ea ea ea ea ea m m2 m2 m2 m3 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m3 m2 m2 m3 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m3 m2 m3 m3 m2 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - - - - 7,965.00 6,336.00
oncrete slab AS Pumps RV solation Valves Suction solation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework toadways ealed Roadway erbing iravel Roadway andscaped Nature Strips ast Nature Strip iii coverage - Native trees, shrubs and hedges, mulched orth Nature Strip iii overage - Native trees, shrubs and hedges, mulched UNDRY MECH / ELECT / CIVIL WORKS	190 L/s Duty/Assist/Standby 190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install Supply and Install Road restoration for pipe trench road crossings	6.4 m x 8.3 m x 0.4 m DN300 DN250 DN250 DN250 DN375 150 DN0/CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m (1:3 batter slope) 59 m x 13.5 m (1:3 batter	45 45 59 59	6.75 6.75 6.75 13.5	4.5	21.25 3 3 3 1 2 20 75 30 550 550 550 1367 607.5 1792 796.5	m3 ea ea ea ea ea ea m m2 m2 m2 m3 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m3 m2 m2 m3 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m3 m2 m3 m3 m2 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49 \$ 1,361.33 \$ 16,638.49 \$ - \$ 6,075.00 \$ - \$ 7,965.00 \$ 6,336.00	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875.00 22,449.80 11,156.72 9,917.09 10,625.00 13,800.00 1,498.25 4,878.10 1,361.33 16,638.49 - - - - - 7,965.00 6,336.00
oncrete slab AS Pumps RV olation Valves Suction olation Valves Discharge AS Flowmeter re and Post Flowmeter Isolation Valve cum Pump Station Cut In ipework oadways ealed Roadway erbing ravel Roadway andscaped Nature Strips ast Nature Strip II overage - Native trees, shrubs and hedges, mulched orth Nature Strip II overage - Native trees, shrubs and hedges, mulched UNDRY MECH / ELECT / CIVIL WORKS oad repairs	190 L/s Duty/Assist/Standby Magflow Knifegate Supply and Install Supply and Install Supply and Install Road restoration for pipe trench road crossings Includes restoration for entire work	6.4 m x 8.3 m x 0.4 m DN300 DN250 DN250 DN250 DN375 150 DN0/CL 15 m x 13.5 m 5 m x 13.5 m (1:3 batter slope) 45 m x 13.5 m (1:3 batter slope) 59 m x 13.5 m (1:3 batter	45 45 59 59	6.75 6.75 6.75 13.5	4.5	21.25 3 3 3 1 2 20 75 30 550 550 550 1367 607.5 1792 796.5 333	m3 ea ea ea ea ea ea m m2 m2 m2 m3 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m3 m2 m2 m3 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m2 m3 m3 m2 m3 m3 m2 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3 m3	\$ \$ \$ \$	12,500.00 5,986.61 2,975.13 2,644.56 8,500.00 5,520.00 5,520.00 	\$ 22,825.69 \$ 37,500.00 \$ 17,959.84 \$ 8,925.38 \$ 7,933.67 \$ 8,500.00 \$ 11,040.00 \$ 1,198.60 \$ 4,878.10 \$ 1,361.33 \$ 16,638.49 \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ .	\$ 9,375.00 \$ 4,489.96 \$ 2,231.34 \$ 1,983.42 \$ 2,125.00 \$ 2,760.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	46,875,00 22,449,80 11,156,72 9,917,09 10,625,00 13,800,00 1,498,25 4,878,10 1,361,33 16,638,49 - - 6,075,00 - 7,965,00

<u>\$ 2,254,960</u>

Page 181 of 184

#### Victoria Point Upgrades - Capital Cost Estimates for Upgrades to Service Developments - Additional Chlorine Contact Tank Rev B. June 24, 2020

Item Excavation New inlet chamber to CCT Floor Slab Exterior Walls	Description	Anticipated Size		Dimensions						DJC Purchase		stallation		DJC Incl. Install
New inlet chamber to CCT Floor Slab	2 D					Qty /	Units	R	ato		1113	~		
New inlet chamber to CCT Floor Slab	3 Personnel (\$250/day), 1 Excavator											()	$\gg$	
Floor Slab	(\$2500/day), 1 Dump Truck (\$1500/day)	1 machine 1.5 days				1.5 day:	5	\$	4,750.00	\$ 7,12	25.00	$\mathcal{O}$		7,125.00
										\$			\$	-
Exterior Walls			2	2	0.25	1	m3	\$	1,074.15	\$ 1,0	)74.10		\$	1,074.15
			6	3.1	0.25	4.65	m3	\$	3,000.00	\$ 13,9	50.00	$\wedge \mathscr{I}$	\$	13,950.00
Interior Walls			2	3	0.225	1.35	m3	\$	0/000100	\$ 4,0	50.00	<u>ح( )</u>	\$	4,050.00
New inlet pipework cut-in						1	ea	\$	4,000.00	\$ 4,0	169.00	9	\$	4,000.00
New Chlorine Contact Tank										$\sim 1/1$				
Floor Slab			23.5	5.45	0.25	32.01875	m3	\$	1,074.15		9294		\$	34,392.94
Exterior Walls Interior Walls			57 33.2	3.1	0.25	44.175 22.41	m3 m3	s C	3,000.00 3,000.00	\$ 67,2	25.00		\$	132,525.00 67,230.00
Penstock	DN900		33.Z	3	0.225	22.41	ea	\$	12,492,33		91.33		¢	12,491.33
Stopboard	DIAAOO					1	ea	\$	8327.55		27.55		¢ 2	8,327.55
Weir plates						1	ea	Š	2 400.00		00.00		\$	2,400.00
Walkway, stairway and service water						1		A A			00.00		\$	8,000.00
								++++					Ť	-1
	AAT		Ċ.			78	Y C n							

Victoria Point Upgrades - Capital Cost Estimates for Upgrades to Service Developments - Compiled with General Items Rev B, June 24, 2020

								DJC Purchase	T	
Item	Description	% Rate	Qty /		Units		Rate	and Installation	D,	JC Incl. Install
Preliminaries									X.	
Service location			16		hr	\$	200	\$ 3,200		3,200
Site Establishment			1		ls	\$	32,000	\$ 32,600		32,000
Site survey			120		hr	\$	128	\$ 15,360		15,360
Environmental controls			1		ls	\$			\$	10,000
Geotechnical investigations			1		ls	\$	12,000	\$ 12,000	\$	12,000
Post-Anoxic / Re-Aeration Tank						$\mathcal{D}$				\$1,289,451
Additional Secondary Clarifier						ベ				\$2,254,960
Additional Chlorine Contact Tank						$\bigtriangledown$	$\diamond$			\$295,565
Commissioning and Handover		3%	of DJC	6	<u> </u>	\$	4,033,542	\$ 121,006	\$	121,006
TOTAL A =				(	110				\$	4,033,542
B. INDIRECTS / MOBILISATION COSTS			- AL I	$V_{\mathcal{L}}$	9					
Indirects	% OF DJC	25.0%	ten	\$	4,033,542	\$	1,008,386			
Site Mobilisation	% OF DJC	0.0%	Item	\$	4,033,542	\$	-			
TOTAL B =									\$	1,008,386
		$\langle \langle \rangle$								
C. OTHER COSTS	$\sim$	$\overline{D}$	>							
Design works	% OF DJC	11.00%	Item	\$	4,033,542	\$	443,690			
Foreign exchange risk	% of imported equip.	10%	%	\$	114,600	\$	11,460			
Design Growth	% OF DJC	3.00%	Item	\$	4,033,542	\$	121,006			
TOTAL C =									\$	576,156
4										
D. FEES & MARGIN	X V				A+B+C					
Margin @ 11%	of A + B + C	11.00%	Item	\$	5,618,084	\$	617,989			
TOTAL D =	<b>~</b>								\$	617,989
Total Contract COST (A+B+C+D) =						\$	6,236,073		\$	6,236,073
Client Costs	% of A+B+C+D	5%		\$	6,236,073	₽ \$	311,804		₽ \$	311,804
		570		Ψ	0,230,073	Ψ	011,004		φ \$	6,547,877
	% of PROJECT COST	30%	Item			¢	6 5 17 077		⊅ \$	
Contingency		30%	item			Φ	6,547,877		Ф	1,964,363

8,512,240

Victoria Point Upgrades - Operational Cost Estimates for Treatment of Loads from Developments Rev A, May 12, 2020

						1		
Population Projection		Baseline	Additional Developments	Additional Load				
Connected EP (2041)		37097	44312	7215	EP	1		$\bigcirc$
Flow per EP		191	191	0	L/EP/d	1		
ADWF		7086	8464	1378	kL/d	1		$\mathcal{C} \times 1$
Jnit Rates								
Electrical Power Consumption		\$0.11	/kWh					
Electrical Power Peak Demand Charg	16	156	/kW peak demand p.a.					$\wedge \bigcirc () \rangle$
Chlorine (920 kg Drum Supply)		\$2.94	per kg Chlorine			1		
Biosolids Haulage Rate - Minimum		\$65	/wet tonne			1	_	
Biosolids Haulage Rate - Maximum		\$100	/wet tonne			1	_ (	
Polyelectrolyte		\$4.95	/kg poly (active)					
						·         {((	<u>)) (*</u>	
		Baseline	Average with Addition	Peak with Addition		Annual Cost with A	dditional	
Operating Cost	Cost Type	(2041)	Developments (2041)	Developments (2041)	Units	Developments (2		Notes
Post-Anoxic/Reaeration Zone							<u> </u>	
Mixers	Electrical - Fixed	Nil	8.88	8.88	kW	\$9,942	×	1
Re-Aeration Blowers	Electrical - Variable	Nil	8.19	13.51	kW	\$9,99	\$26,384	
Diffuser replacement	Maintenance	Nil			O,	\$6,443		
·					0.0			
Additional Clarifier					284			
Clarifier Drive	Electrical - Fixed	Nil	2.285	2.285	kW	\$2,558		
RAS Pumps (5m head)	Electical - Variable	Nil	1.08			\$1,212	\$22,395	Assumes 2 months per year with 5 x ADWF events
	Maintenance					\$18,625		
				_((				
			Average with Addition	Additional Charme Consumption with		Annual Cost with Ad	dditional	
Additional Chlorine Contact Tank		Baseline	Developments	Developments	Units	Development	ts	Notes
Chlorine	Chemical - Variable	15259	16991	2766	kg p.a.	\$8,133		
			1 25 1					
		Baseline	Average with Addition	Peak with Addition		Annual Cost with Ad	dditional	
Other Power Consumption		(2041)	Developments (2041)	Developments (2041)	Units	Development	ts	Notes
	Actual OTR	118.3	141.6	23.3	kg O2/h			1.9 kgO2/kWh SOTR
Oxidation Ditch Aerators	Standard OTR	169.3	2026	33.3	kg O2/h			17.5 kW additional
	Electrical - Variable	_	17.5			\$20,412		
Filter Feed Pumps	Electrical - Variable	$\bigcap$	1.34	6.7	kW	\$1,466		Assumes 2 months per year with 5 x ADWF events
Other	Electrical - Variable		2	2	kW	\$2,239		
Other - Poly Consumption	Chemical - Variable	19.9		3.92	kg/day	\$7,083	\$150,442	
	Dry Solids Production	181	2167	356	kg DS/day			Assumes 11 kg poly/dry tonne solids (upgraded dewatering system
Biosolids Production	Biosolids - Variable at Min & Kange	$\mathcal{N}$		1.98	wet tonnes per day	\$46,974		Assumes 18% Dry Solids Cake (upgraded dewatering system
	Biosolids - Variable at Max of Range	$\sim$		1.98	wet tonnes per day	\$72,268		Assumes 18% Dry Solids Cake (upgraded dewatering system
Fotal	Electrical - Fixed					\$12,500		
	Electrical Valiable					\$35,328		\$70.24 per ML treated
	Chemical Variable					\$15,216		\$30.25 per ML treated
	Maintenance - Fixed					\$25,068		]
	Bosolds - Valtable at Minimum of Range					\$46,974		\$93.39 per ML treated
	siosolids - Variable at Maximum of Range					\$72,268		\$143.68 per ML treated
Total Excl. Biosolids						\$88,113		
Total with Biosolids at Min of Rang	in the second se					\$135,087		
	V				1			
Fotal with Biosolids at Max of Rang	Je	1	1	1	1	\$160,381		