

LIMITATIONS AND PROHIBITIONS UPON USE AND REPRODUCTION OF REPORT

No part of this report, its attachments or appendices may be reproduced by any process without the writter confirmation of Future-Plus Environmental ("FPE") except in the following circumstances: -

- Fair dealing for the purposes of private study, research, criticism or review as permitted under the Copyright Act;
- b) In the case of the submission of the report to a local government or other governmental or guasgovernmental authority ("the client"), a permanent, royalty free, irrevocable, license to use, produce, adapt or exploit the report for the business, policy and purposes shall apply.

This report has been prepared upon instructions from the client for the specific purpose only for which it is supplied. This report is strictly limited to the facts and matters stated in it and is not to be used for any other application, purpose, use or matter.

In preparing this report we have made certain assumptions. We have assumed that all information and documents provided to us by the client or as a result of a specific request or enquiry were complete, accurate and up-to-date. Where we have obtained information from a government register or database, we have assumed that the information is accurate.

Where an assumption has been made based on a government register of database, we have not made any independent investigations with respect to the matters the subject of that assumption. We are not aware of any reason why any of the assumptions are incorrect.

This report does not provide or assume a duty of care to any other person or entity (other than the client) and, without the prior written consent of FPE:-

- c) This report may not be relied on by a Third Party; and
- d) FPE will not be liable to a third party for any loss, damage, liability or claim arising out of or incidental to a Third Party publishing, using or relying on the facts, content, opinions or subject matter contained in this report.

If a Third Party uses or relies on the facts, content, opinions or subject matter contained in this report with or without the consent of FPE, FRE disclaims all risk and the Third Party assumes all risk and releases and indemnifies and agrees to keep indemnified FPE from any loss, damage, claim or liability arising directly or indirectly from the use of or reliance on this report.

In this note, a reference to loss and damage includes past and prospective economic loss, loss of profits, damage to property, injury to any person (including death) costs and expenses incurred in taking measures to prevent, mitigate or rectify any harm, loss of opportunity, legal costs, compensation, interest and any other direct, indirect, consequential or financial or other loss.

Signed on behalf of Future-Plus Environmental

Date: 26 August 2020

aul Wood Director 26 August 2020

CLR21 Coochiemudlo Island Closed Landfill – GW & SW Quarterly EMP Report, August 2020 Redland City Council Landfill Environmental Monitoring Program Elizabeth Street, Coochiemudlo Island i.

DOCUMENT CONTROL INFORMATION

Project Number: 5329

Project Manager: Kaine Pritchard

Client: Redland City Council

Report Title: CLR21 Coochiemudlo Island Closed Landfill - Groundwater & Surface Water Quarterly LEMP

Report, August 2020 - Version 0.1

Project: Redland City Council Landfill Environmental Monitoring Program (LEMP)

Site Address: Elizabeth Street, Coochiemudlo Island, QLD 4184

Project Summary: Quarterly reporting of environmental monitoring under a ken in accordance with the site Landfill Environmental Monitoring Plan (LEMP) at Coochiemudle Istand Closed Landfill including groundwater and, surface water monitoring.

Document Version	Author Reviewed By	Approved By
5329-200817-0.1	Sophie Blond Kaine Pritchard	Paul Wood
	$(O)_{c,j}$	

Document Review

lecuo	۸n	nrow	Ы
issue	AD	prova	11

Destination		Document Versio	n	Date Dispatched
Redland City Council – L	ngital Copy	5329-200817-0.1		26 August 2020
26 August 2020	CLR21 Coochie	emudlo Island Closed Landfill –		

EXECUTIVE SUMMARY

Future-Plus Environmental (FPE) were commissioned by Redland City Council (RCC) to undertake environmental monitoring in accordance with the *RCC Environmental Monitoring Program* (EMP) (FPE, 2019) at Coochiemudlo Island Former Landfill, located at Elizabeth Street, Coochiemudlo Island (the site)

This report presents the quarterly sampling results of groundwater and surface water environmental monitoring conducted by FPE in August 2020 for Quarter 3, 2020.

In summary, the Quarter 3 monitoring event identified the following:

Groundwater:

- Statistically significant results (where available) were reported at one downgradient groundwater monitoring location:
 - o GW3 for Chloride
- New maximums were reported for the following downgradient locations and parameters:
 - o GW2 for Calcium (56mg/L), pH (6.69 pH) and Support (45mg/L); and
 - GW3 for Chloride (175mg/L).
- Ammonia as N has decreased at downgradient wells GW2 since the previous monitoring event and does not exceed any WQOs at any downgradient or upgradient groundwater wells;
- Iron (filtered) exceeded the WQO at sowngradient wells GW2 and GW3 and upgradient well GW6, however was within historic ranges;
- Latest groundwater results do not indicate leachate impact on groundwater and are considered to
 pose a low risk to groundwater and sensitive receptors downgradient of the former landfill;
- Further in-depth statistical analysis is required to determine if elevated levels of parameters at downgradient locations are statistically different to background levels at upgradient locations. This further analysis is outside the current scope of works; and
- All other results are consistent with historical levels.

Surface water:

Anomonia (a key leachate indicator) was detected during the current sampling at one downstream site (CISW5). Ammonia levels slightly exceeded the WQO at CISW5;

Low Ammonia levels were also recorded at upstream locations, indicating that traces of Ammonia at both upstream and downstream locations could be related to external factors rather than landfill impacts;

- Iron was detected across all locations with concentrations similar between upstream and downstream locations.
- Based on the current monitoring results, the landfill is considered to pose a low risk to downstream surface water receivers.

Recommendations

Further statistical analysis of the exceedances of key leachate parameters identified in terms of groundwater are recommended to determine if there are significant differences between upgradient and gowngradient sampling results and if leachate from the site is potentially impacting on groundwater

The current quarterly monitoring program should continue in order to detect any four impact of leachate on groundwater and surface waters downgradient and downstream of the former landfill.

LIST OF ABBREVIATIONS

Abbreviation	Term
ANZECC	Australian and New Zealand Environment and Conservation Council
ARMCANZ	Agricultural and Resource Management Council of Australia and New Zealand
ANZG	Australian and New Zealand Guidelines for Fresh and Marine Water Quality
BOD	Biological Oxygen Demand
BOM	Bureau of Meteorology
COD	Chemical Oxygen Demand
DES	Department of Environment and Science
DNRME	Department of Natural Resources, Mines and Energy
DO	Dissolved Oxygen
EA	Environmental Authority
EC	Electrical Conductivity
EPP	Environmental Protection Pelicy
EV	Environmental Values
LEMP	Landfill Environmental Monitoring Program
LOR	Laboratory Limit of Reporting
μS	Micro-Siemens
mBGL	Metres Below Ground Level
NATA	National Association of Testing Authorities
QA/QC 🗸	Quality Assurance/Quality Control
QWQG	Queensland Water Quality Guidelines
RCC	Redland City Council
SWL	Standing Water Level
TOC	Total Organic Carbon
TSS	Total Suspended Solids
Wee	Water Quality Objective
2.C	Percent Saturation
$\overline{\mathbf{\nabla}}$	

TABLE OF CONTENTS

EXECUTIVE SUMMARY	
	(2007
1.2 REPORT STRUCTURE & CONTENT	$\langle \rangle \rangle_{9}$
2.0 METHODOLOGY	
2.1 Overview	
2.2 MONITORING LOCATIONS & REQUIREMENTS	10
2.2.1 Groundwater Monitoring Locations	
2.2.2 Surface Water Monitoring Locations	11
2.3 MONITORING RESULTS DATABASE	11
2.4 Environmental Guidelines	11
2.5 DATA ASSESSMENT	13
2.5.1 Groundwater	13
2.5.2 Groundwater Statistical Assessment	13
2.5.3 Surface Water	
3.0 QUALITY ASSURANCE & QUALITY CONTROL - FIELD SAMPLING	15
3.1 GENERAL	15
3.2 Field & Laboratory Water Quality Analysis	15
3.2.1 Field Data Quality Assessment	
3.2.2 Field blanks	
3.2.3 Rinsate	
3.2.4 Duplicates	17
4.0 WEATHER & MONITORING SITE CONDITIONS	18
4.1 SITE CONDITIONS	18
4.2 WEATHER CONDITIONS	18
5.0 QUALITY ASSURANCE & QUALITY CONTROL - SAMPLING RESULTS	19
5.1 LABORATORY QAVOC RESULTS	19
6.0 MONITORING RESULTS	20
6.1 GROUNDWATER RESULTS	20
641 Groundwater Levels	
Well Condition Review	
5.1.3 Field Observations	
.1.4 Groundwater Statistical Analysis	
0.1.5 Upgradient Monitoring Well Results	
6.1.6 Downgradient Monitoring Well Results	

4.1.7 Summary of potential landfill impact on Croundwater	25	\overline{O}
6.2 Subject Wated Result to	26	7
6.2.1 Monitoring location descriptions		\mathcal{P}
6.2.2 Background Surface Water Results	(It)	2
6.2.3 Downstream Surface Water Sampling Results		
6.2.4 Summary of potential landfill impact on surface water		
7.0 CONCLUSIONS	32	
7.1 GROUNDWATER	32	
7.2 SURFACE WATER	33	
8.0 RECOMMENDATIONS	34	
9.0 REFERENCES	35	
Figure 1. Annual Rainfall Statistics (BOM, 2020).	18	
Figure 2. Groundwater levels (mAHD) of monitoring wells at BWF for 2017 to 2020	20	
LIST OF TABLES		
Table 1. Environmental Monitoring Requirements	10	
Table 2. Groundwater Monitoring Sites	11	
Table 3. Surface Water Monitoring Sites	11	
Table 4. Water Quality Laboratory Parameters & LOR	16	
Table 5. Groundwater Well Condition Review	21	
Table 6. Groundwater well location and sample descriptions	21	
Table 7. Exceedances of WQOs at Upgradient Monitoring Sites	22	
Table 8. Exceedances of WQOs at Downgradient Monitoring Sites	23	
Table 9. Surface water locations and sample descriptions	26	
Table TOZExceedances of WQOs Upstream Surface Water Sites	27	
Table 11. Exceedances of WQOs Downstream Surface Water Sites	29	
LIST OF APPENDICES		
Appendix A. Monitoring Locations Plan	Α	

\sum				
~	Appendix B.	Results Summary	 	B

Appendix C. Gr	oundwater Statistical ChartsC
Appendix D. Gr	oundwater Graphs
Appendix E. Su	Irface Water Graphs
Appendix F. La	boratory Analysis Results and QA/QC Reports
Appendix G. Fie	eldnotesG
	(\bigcirc)
	× Or
	(\bigcirc)
,	\bigcirc
M	
	\Rightarrow
L'Z	
$\langle \langle \rangle \rangle$	
Δ	
$(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
(O)	

1.0 INTRODUCTION

1.1 BACKGROUND

Future-Plus Environmental (FPE) were commissioned by Redland City Council (RCC) to undertake environmental monitoring at Coochiemudlo Island Former Landfill (referred to herein as the site) located at Elizabeth Street, Coochiemudlo Island (the site), in accordance with the site's Environmental Monitoring Plan (EMP) (FPE, December 2019).

The site was utilised as the main disposal point for municipal waste, including inert/hardfill and green waste. It has been recorded that there were 500 residents on the island from 1972 to 1994. As of today, the site is currently used as a waste transfer station and for recreational purposes, including a park, sports field and tennis courts. The surrounding area of the site is mixed land use, including nearby sensitive receptors, which includes a substantial residential area and wetlands

1.2 REPORT STRUCTURE & CONTENT

This Quarter 3 2020 report summarises the groundwater and surface water environmental monitoring findings for sampling conducted by FPE in August 2020

This report has been prepared to meet the LEMP reporting requirements and includes the following:

- Details on the monitoring locations, first hooology and data assessment adopted for the quarterly monitoring event;
- Details on the quality assurance/quality controls (QA/QC) for the field sampling;
- Weather and monitoring site conditions during the field sampling events;
- Details on the QA/QC to the monitoring results;
- Results of statistical analysis and exceedances of adopted water quality objectives (WQOs) for the groundwater and surface water sampling results; and
- Results, conclusions and recommendations for the ongoing management of groundwater and surface water at the site.

2.0 METHODOLOGY

2.1 OVERVIEW

RCC requires a regime of environmental monitoring at the site to meet the requirements of the EM including quarterly monitoring of groundwater and surface water.

Works undertaken during the Quarter 3 (August 2020) monitoring events, as per the EMP requirements, were comprised of quarterly groundwater and surface water monitoring undertaken on \$ August 2020.

2.2 MONITORING LOCATIONS & REQUIREMENTS

Groundwater and surface water monitoring locations are presented in Appendix A

The specific groundwater and surface water environmental monitoring requirements in accordance with the LEMP are presented in Table 1.

At each monitoring site field observations are completed and well condition is assessed at each groundwater monitoring site, noting any infrastructure damage, ground disturbance or unusual colour/odour of sampling location.

	Monitoring Aspect	Monitoring Location	Field Analysis	Laboratory Analysis
	Groundwater	Upgradient:	pH (pH units)	Sulphate - (Turbidimetric) as SO4
	(Quarterly)	GW5, GW6	Electrical	Major Cations (Na, Mg, K, Ca)
		Downgradient: GW1, GW2, GW3	Conductivity (µ8/cm) Standing water level (SWL)	Ammonia as N Nitrate Total Phosphorus as P Dissolved metals (Mn, As, Al, Cr, Cu, Cd, Pb, Zn, Fe, Hg, Ni) Dissolved Mercury Total Organic Carbon (TOC)
ł	Surface	Upstream	pH (pH units)	Total Suspended Soils (TSS)
	Water (Quarter	(Background): CISW2, CISW3,	Electrical	Sulphate - (Turbidimetric) as SO4 Major Cations (Na, Mg, K, Ca)
		CISW4	(µS/cm)	Ammonia as N
	\sim	\smile	Dissolved Oxygen	Nitrate
	2 m	Downstream:	(ppm and %	I otal Nitrogen
	\sim	CISW1, CISW5	saturation)	Dissolved metals (Mp. As. Al. Cr. Cu.
				Cd Ph Zn Fe Ha Ni)
1	\sim			Total Organic Carbon (TOC)
J				Chemical Oxygen Demand (COD)
	IJ			Biochemical Oxygen Demand (BOD)

Table 1. Environmental Monitoring Requirements

2.2.1 Groundwater Monitoring Locations

Groundwater quality monitoring is required at two upgradient locations and three downgradient locations, which are presented in Table 2.

Table 2. Groundwater Monitoring Sites

Logation	GPS Coordinates (UTM GDA94)		
LUCATION	Easting	Northing	
Upgradient Locations		(7/)	
GW5	532940	8950507	
GW6	532940	6950407	
Downgradient Locations			
GW1	533049	6950518	
GW2	533058	6950484	
GW3	533038	6950418	

2.2.2 Surface Water Monitoring Locations

Surface water quality monitoring is required for three bystream (background) and two downstream locations and these are presented in Table 3.

Table 3. Surface Water Monitoring Sites

Location	CPS Coordinates (UTM GDA94)		
LUCATION	Easting	Northing	
Upstream (Background) Loca	ations 🗸		
CISW2	533157	6950606	
CISW3	533256	6950606	
CISW4	533255	6950351	
Downstream Locations	>		
CISW1	533088	6950507	
CHSW55	533068	6950440	

2.3 MONITORING RESULTS DATABASE

Results of all groundwater and surface water monitoring field and laboratory analysis have been entered into the EStat environmental monitoring database, which includes historical monitoring results and allows for domparison of results with adopted WQOs.

4 ENVIRONMENTAL GUIDELINES

The Environmental Protection (Water) Policy 2009 - Moreton Bay environmental values and water quality objectives (Department of Environment and Resource Management (DERM), July 2010), [referred to represent the server of the environmental values (EVs) for surface and groundwater quality within the region. This document also identifies the WQOs associated with each EV.

As the site and the Melaleuca Wetland are situated within the coastal freshwater area within Coochiemudlo Island, the site is classified as "Coochiemudlo Island" for the purpose of establishing EVs and associated WQOs (DERM, 2010).

The following EVs and their relevant guidelines apply (as specified in the EPP (water) for Coochiemostic Island):

- Aquatic Ecosystems (include seagrass) (Groundwater/surface water);
- Irrigation (Groundwater);
- Stock Water (Groundwater);
- Human Consumer (include oystering) (Surface water only);
- Drinking water (Groundwater only);
- Primary/Secondary/Visual Recreation (Surface water only), and
- Cultural and Spiritual Values (Surface water only).

The above EVs represent potential receptors of any impact from Coeffic nuclo Island Former Landfill. An assessment of these potential receptors by GHD (GHD, 2019) identified the following receptors as actual or likely receptors for further assessment, based on characterising actual water use in the area:

- Surface water: aquatic ecosystems (including Walum frog habitat (GHD, 2018), cultural and spiritual values; and
- Groundwater: aquatic ecosystems.

As recommended in the EPP (water), the adopted WQOs were determined from a combination of documents, including the following:

- Environmental Protection Water Policy (Department of Natural Resource Management, 2010) corresponding to the following:
 - Physio-ehernical WQOs for aquatic ecosystem lowland freshwater (comprising lowland streams, Wallow/tennin-stained streams and coastal streams)
 - Local WQOs for drinking water supply
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality (Australian and New Zealand Environment and Conservation Council [ANZECC]/Agriculture and Resource

Management Council of Australia and New Zealand [ARMCANZ], 2000 and 2018 revision),

corresponding to the following:

- Protection of slightly to moderately disturbed ecosystems
 - Utilised as the site is in an urbanised environment
- Protection of 99% species for surface water for metals only
 - Utilised as an indicator of metal concentrations elevated in relation to optimal concentrations for Wallum frog habitat

Site-specific WQOs have also been developed to improve the assessment of potential wallum frog habitats:

- GHD 2018 Coochiemudlo Island wetland guideline for the following parameters (GHD, 2018)
 - o pH between 3.53 and 4.61 pH units;
 - EC < 90 μS/cm;
 - Tannin acid staining > 9.5 mg/L;
 - Calcium < 3.02 mg/L; AND
 - Low levels of monomeric aluminium consistent with siliceous sand and Wallum waters (refer to Aluminium guideline value from ANZECC FW 99%)

The results from the groundwater and surface water monitoring have been compared against the WQOs.

2.5 DATA ASSESSMENT

2.5.1 Groundwater

Data assessment for groundwater has been undertaken to determine if leachate generated at the site is potentially impacting on local groundwater. The following assessment approach has been adopted:

- Identification of statistically significant fluctuations in groundwater quality;
- Comparison of results with published QOs (pefer to Section 2.4);
- Comparison between up gradiegt and down gradient locations (refer to Section 2.5.2.1); and
- Evaluation of trends in indicator parameter concentrations.

2.5.2 Groundwater Statistical Assessment

Results from each monitoring well were compared to the mean (x) and multiples of standard deviations (x+1s, x+2s and x+2s) of historical results for each specific parameter. Historical data for the site monitoring wells is based on the first eight sampling events conducted at the start of the landfill monitoring program (since June 2017 or April 2018, depending on location and parameter). As such, some locations and parameters require additional monitoring data before control lines can be determined.

The adopted assessment criteria consist of the following exceedances:

Five consecutive observations greater than the x+1s control line;

Two consecutive observations greater than the x+2s control line; and

One observation greater than the x+3s control line

In the case of pH, the control line also applies when pH measurements are less than the mean (i.e. x-1s, x-2s, x-3s). Statistically significant results that are identified are discussed further, to provide comparison

with background water quality and provide context regarding any potential impact on the receiving environment.

Each parameter for each groundwater well has been graphed and includes the above adopted assessment criteria (Appendix C).

2.5.2.1 Upgradient & Downgradient Well Comparison

Comparison of up-gradient and down-gradient groundwater well data is undertaken by assessment of groundwater trend graphs provided in Appendix D.

2.5.3 Surface Water

Data assessment for surface water has been undertaken to determine if leachate generated at the site is potentially impacting on local surface water quality. The following assessment approach has been adopted:

- Identification of statistically significant fluctuations in groundwater quality;
- Comparison of results with adopted WQOs (refer to Section 2.4);
- Comparison between upstream and downstream monitoring locations (refer to Section 2.5.3.1); and
- Evaluation of trends in parameter concentrations at specific surface water monitoring locations.

2.5.3.1 Upstream & Downstream Comparison

Comparison of up-stream and down-stream surface water data is undertaken by assessment of surface water trend graphs provided in Appendix F.

3.0 QUALITY ASSURANCE & QUALITY CONTROL – FIELD SAMPLING

3.1 GENERAL

The Quality Assurance /Quality Control (QA/QC) program for the field sampling component of the LEMP was undertaken in accordance with, but not limited to, the following:

- Monitoring and Sampling Manual Environmental Protection (Water) Policy 2009 (Version 2, (DES, 2018);
- ISO 5667-11 1993 and AS/NZ 5667.11:1998 Water Quality Sampling Guidance on Sampling of Groundwater;
- AS/NZS 5667.6: 1998 Water Quality Sampling Guidance on Sampling of Rivers and Streams;
- Environmental Guidelines: Solid Waste Landfills, Second Edition (2016 (NSW EPA, 2016); and
- Best Practice Environmental Management Siting, Design, Operation and Rehabilitation of Landfills (Publication 788.3) (EPA Victoria, 2015).

QA/QC procedures included:

- Monitoring of climatic conditions likely to be experienced at site;
- Calibration of TPS 90 FLT water meter prior to and jollowing sampling;
- Triple rinse decontamination procedure of all equipment prior to sampling and between sampling points for all environmental monitoring,
- Use of nitrile disposable gloves for sample collection. Disposable gloves were replaced between sample locations;
- Collection of field duplicate, thiple blank and rinsate blank samples;
- Review of QC reports generated by the laboratory of their internal procedures and checks including matrix spikes, surrogate spikes, duplicate analyses, reagent and method blanks;
- Correct cold storage of samples (target <6°C) and delivery to ALS Global NATA accredited laboratory within recommended holding times (target 24 hrs); and
- Record keeping of transport documentation and use of chain of custody procedures, including sample list forms submitted to the laboratory and laboratory sample receipt documentation.

3.2 FIELD & LABORATORY WATER QUALITY ANALYSIS

Analysis of field parameters was undertaken using a TPS 90FLT water quality meter. Laboratory analysis was undertaken by ALS Global (NATA accredited) laboratory in accordance with the laboratory methods and level of reporting detailed in Table 4Error! Reference source not found..

Table 4. Water Quality Laboratory Parameters & LOR

Parameter	LOR (mg/L or as indicated)
Sulphate – (Turbidimetric) as SO ₄	1
Major Cations: Ca, Mg, Na, K	1 ()
Ammonia as N	0.01
Nitrate	0.01
Dissolved Metals (Mn, As, Al, Cr (III+VI), Cu, Cd, Pb, Zn, Fe, Hg)	Zn: 0.005 Hg: 0.0091 Otheys) 0.001
Total Organic Carbon (TOC)	
Chemical Oxygen Demand (COD)	
Biological Oxygen Demand (COD)	2
Total Suspended Solids (TSS)	5
Total Phosphorus	0.01

3.2.1 Field Data Quality Assessment

As part of the QA/QC program, field duplicates, field blank and insate samples were prepared and submitted for laboratory analysis.

FPE follow strict sample collection procedures to answer representative samples are collected and high results integrity achieved.

3.2.2 Field blanks

Field blanks were used to assess the potential for cross contamination during field handling procedures and shipment of the samples to the laboratory and consisted of a sample of deionised water that was supplied by the laboratory.

Field blank samples were submitted for analysis with each batch / esky of samples collected during groundwater and surface water sampling events.

One field blank sample (Sample ID Blank) was analysed for the parameters specified in *Appendix C: Coochienrudid* Island Closed Landfill of the Environmental Monitoring Plan for the Landfill Environmental Monitoring Program (FPE, 2019).

3.2.3 Ringate

Equipment rinsate blanks were prepared in order to assess whether equipment decontamination procedures adequately prevented and/or minimised the potential for sample cross-contamination. A rinsate sample was collected following completion of each sampling event during which sampling equipment (e.g. sampling jug) was utilised for sample collection.

One rinsate blank sample (Sample ID Rinsate) was prepared and submitted to the laboratory for analysis of analytes representative of the sampling undertaken during each sampling event (GW and SW inclusive).

3.2.4 Duplicates

A duplicate sample (SWQA) was taken during each monitoring event (GW and SW inclusive) for analysis and used to indicate if repeatable results are obtained and for the quality of data to be evaluated

Duplicate samples were submitted for analysis with each batch of samples conjected (primary sample CISW4).

A Precision assessment is reported as Relative Percent Difference (RPD) between the two results (sample and duplicate). Where the RPD value is greater than the adopted (trigger value, it is identified as an exceedance.

4.0 WEATHER & MONITORING SITE CONDITIONS

4.1 SITE CONDITIONS

Surface water points CISW1 and CISW2 were difficult to access due to long vegetation within the wetland The remaining sample locations were readily accessible.

4.2 WEATHER CONDITIONS

Conditions at the time of monitoring on 5 August 2020 have been outlined below. All climate data (except rainfall) was extracted from the Redland (Alexandra Hills) Station No.140007 (Bureau of Meteorology [BOM] 2020). Temperatures ranged from 9.1 to 22.6 °C during sampling.

Annual rainfall statistics were also utilised from the Capalaba Water Treat Bureau Station No.040458 (Bureau of Meteorology [BOM] 2020), 15.1km from the site. There was no rainfall recorded in the week preceding the sampling event or during the sampling event.

Annual rainfall statistics from the Capalaba Water Treat Station No. 040458 are displayed in Figure 1 below.

5.0 QUALITY ASSURANCE & QUALITY CONTROL - SAMPLING RESULTS

5.1 LABORATORY QA/QC RESULTS

As part of the QA/QC program, field duplicates, trip blank and rinsate samples were prepared and submitted for laboratory analysis. Laboratory QA/QC Results are provided in Appendix F.

FPE follow strict sample collection procedures to ensure representative samples are collected and high results integrity achieved.

The Relative Percentage Difference (RPD) for the field duplicate was acceptable baced on the following:

- Below 50% if result was between 10 and 20 times LOR;
- Below 20% if result >20 times LOR; and
- No limit if result <10 times the LOR.

RPD were within acceptable limits outlined above for all field duplicates. No traces of any parameters were identified from within the Rinsate or Field Blank sample.

Review of the laboratory QA/QC reporting identified the following

- No Method Blank value outliers occur;
- No Duplicate outliers occur;
- No Laboratory Control outliers occur,
- No Matrix spike outliers occur;
- No Surrogate recovery outliers occur;
- No Analysis Holding Time Outliers occur; and
- No Quality Control Sample Frequency Outliers occur.

Based on results above that the sampling results are representative of the site conditions.

6.0 MONITORING RESULTS

All groundwater and surface water sampling locations were effectively sampled during the Quarter 3 monitoring event. All tabulated groundwater and surface water results from the Quarter 3 monitoring event are provided in Appendix B.

6.1 GROUNDWATER RESULTS

6.1.1 Groundwater Levels

Groundwater levels (mAHD) for each groundwater bore are displayed in the Figure 2 below, from 2017 to 2020. Upgradient bores at the site are GW5 and GW6, while downgradient bores are represented by GW1, GW2 and GW3.

Figure 2. Groundwater levels (mAHD) of monitoring wells at Coochiemudlo Island Closed Landfill from 2027 to 2020

Groundwater levels have increased at all downgradient locations except for GW3 during the current monitoring event when compared to the previous monitoring event. Groundwater levels increased at upgradient locations GW5 and GW6 during the August 2020 sampling event. Groundwater levels varied from 2.62mAHD (GW3) to 3.949mAHD (GW5) and all locations are within the historical range of groundwater levels.

6.1.2 Well Condition Review

The condition of all groundwater wells during the most recent monitoring event is provided in Table 5 below.

Table 5. Groundwater Well Condition Review

Monitoring well ID	Condition as of August 2020
Upgradient bores	
GW5	Good
GW6	Good
Downgradient bores	
GW1	Good
GW2	Good
GW3	Good
· · · · ·	

6.1.3 Field Observations

Visual observations of sample material retrieved from all groupdwater wells is noted in Table 6 below.

Location ID	Location Description	Sample description
Upgradient bore	s	
GW5	Located 5 m east of the waste transfer station	Clear, no odour with suspended solids present.
GW6	Located 60 m south of the waste transfer station.	Organic/Sulphur odour, cloudy with small particles and sand present.
Downgradient be	ores	
GW1	Located 10 m west of the waste transfer station.	Clear, small particles present and no odour.
GW2	Located 10 m west of the closed landfill.	Strong odour of Sulphur, suspended solids present
GW3	Located 50 m south-west of the former andfill, adjacent to the tennis court.	Orange/brown in color, highly turbid and no odour.
	\bigcirc /	

Table 6. Groundwater well location and sample descriptions

6.1.4 Groundwater Statistical Analysis

	$\sum_{i=1}^{n}$			Sar	npling D	ate				
Monitoring Weil	Parameter	Unit S	20/08/19	13/11/19	17/02/20	19/05/20	5/08/20	X+ 1s	X+2s	X+3s
GW3	Chloride	mg/L	N/A	N/A	N/A	12	175	31.95	41.78	51.61

				Sai	mpling D	ate				R
Monitoring Well	Parameter	Unit S	20/08/19	13/11/19	17/02/20	19/05/20	5/08/20	X+ 1s	X+2s	X+35
GW5	TOC	mg/L	<1	1	<1	2	2	1		\mathcal{O}_1
GW6	Iron	mg/L	0.745	0.241	0.11	1.49	2.23	0.45126	0.65353	0.8557 9

A review of the statistically significant results and WQO exceedances reported during the August 2020 monitoring period within up and down gradient monitoring wells is summarised in the following sections.

Trend charts with analytes plotted against control line criteria are provided in Appendix C.

6.1.5 Upgradient monitoring well results

WQO exceedances for upgradient sites GW5 and GW6 are summarised in Table 7 below. WQO exceedances at GW5 and GW6 are considered to represent background conditions and are not considered to represent impact from the former landfill. It is noted that whilst Ammonia was not detected at either upgradient well, Iron was detected at GW6 and exceeds the adopted WQO.

			$\langle \langle \cdot \rangle$		Cur	rent
	Parameter	Units	ΣVs	WQOs	Re	sult
					GW5	GW6
	рН	рН	GHD 2018 Coochiemudlo Island wetland	3.53-4.61		
		Units	Moreton Bay - Schedule 1 EPP (water) -	6 5-8	4.59	3.8
			Walum/Tannin Freshwater	0.0-0		
	EC	µS/cm	CHD 2018 Coochiemudlo Island wetland	90		
		\bigcirc	Moreton Bay - Schedule 1 EPP (water) -		070	0074
		5	Wallum/Tannin Freshwater	626	279	2074
	EZ .		Schedule 1 EPP (water) - Drinking Water	1,000		
\langle	Nitrate	mg/L	ANZECC FW Slight-mod disturbed system	0.158	1.48	N/A
$\sum_{i=1}^{n}$	Aluminium	mg/L	ANZECC FW Slight-mod disturbed system	0.055	N/A	5.71
	(Filtered)	mg/L	Schedule 1 EPP (water) - Drinking Water	0.05	N/A	2.23

Table 7. Exceedances of WQOs at Upgradent Monitoring Sites

Parameter	Units	EVs	WQOs	Cur Re	rrent sult
				GW5	GW6
Manganese	mg/L	Schedule 1 EPP (water) - Drinking Water	0.05	N/A	0.135
Phosphorus	mg/L	Moreton Bay - Schedule 1 EPP (water) - Wallum/Tannin Freshwater	0.05	NA	0.08
Zinc	mg/L	ANZECC FW Slight-mod disturbed system	0.008	WAD	0.015

*Note: N/A Indicates that the result from that sampling location did not exceed any guidelines and thus not included in the exceedance table. The majority of monitored parameters at both upgradient locations did not exceed the statistical assessment criteria, except for the following:

- GW5 TOC (2 mg/l) exceeded the X+2s and X+3s control line criteria,
- GW6 Iron (1.49 mg/l) exceeded the X+2s and X+3s control line criteria.

6.1.6 Downgradient monitoring well results

WQO exceedances for downgradient groundwater well sites GW1, GW2 and GW3 are summarised in Table 8 below.

	Daramatar	Unite	EVE	MOOs	Cur	rent Re	sult
	Farancici	Units		WQ03	GW1	GW2	GW3
Î			GHD 2018 Coochiemudlo Island	3.53-			
	nH	рН	wetland	4.61	6 33	6 69	4 93
	pri	Upits	Moxeton Bay - Schedule 1 EPP (water)	65-8	0.00	0.00	4.00
			- Wallum/Tannin Freshwater	0.0 0			
	(\bigcirc	GHD 2018 Coochiemudlo Island	90			
	$\sum_{i=1}^{n}$	$\mathbf{\mathcal{G}}$	wetland				
	LEC	µS/cm	Moreton Bay - Schedule 1 EPP (water)	626	501	749	N/A
	S. S.		- Wallum/Tannin Freshwater				
\langle	$\langle \rangle$		Schedule 1 EPP (water) - Drinking	1000			
5	\searrow		Water				
$\langle C \rangle$	Minrate (as N)	mg/L	ANZECC FW Slight-mod disturbed	0.158	1.48	N/A	N/A
\sum	\mathcal{O}	,	system				

Table 8. Exceedances of WQOs at Downgradient Monitoring Sites

Parameter	Units	FVs	WOOs	Current Result			
i di di licitori		210	11205	GW1	GW2	GW3	
Aluminium	mg/L	ANZECC FW Slight-mod disturbed system	0.055	N/A	N/A	0.12	
Iron (Filtered)	mg/L	Schedule 1 EPP (water) - Drinking Water	0.05	N/A	72%	0.08	
Phosphorus	mg/L	Moreton Bay - Schedule 1 EPP (water) - Wallum/Tannin Freshwater	0.05	RIA	0.08	0.46	

*Note: N/A Indicates that the result from that sampling location did not exceed any guidelines and thus not included in the exceedance table.

6.1.6.1 Downgradient well – GW1

All monitored parameters at downgradient GW1 were within the statistical assessment criteria for this quarterly monitoring event.

Concentrations of parameters, including where WQOs were exceeded, were consistent with background concentration ranges and/or with recent concentration trends with the exception of:

- Calcium levels (60mg/L) remain above (all downgradient and upgradient wells;
- Nitrate levels (1.48mg/L) were at the same level as upgradient well GW5, and whilst the current results exceed the adopted WGO, it is within the historical range of data;
- pH (6.33 pH) remains above both upgradient well results and a potential increasing trend is noted;
- Potassium (13mg/() remains above both upgradient wells and a potential recent increasing trend is noted, however results are within historical data;
- Sulphate (115mg/L) remains several orders of magnitude above both upgradient wells however a potential devreasing trend is noted. Results remain within historical levels; and
- TOC 5mg/L remains above both upgradient wells but is within historical data.

6.1.6.2 Downgradient well – GW2

All monitored parameters at downgradient GW2 were within the statistical assessment criteria for this suartedy monitoring event.

Concentrations of parameters, including where WQOs were exceeded, were consistent with background oncentration ranges and/or with recent concentration trends with the exception of:

Arsenic (0mg/L) has decreased considerably and like at the upgradient wells, was not detected during the current monitoring event.

- Calcium levels (56mg/L) remain above the upgradient wells and a potentially increasing trend is noted. A new maximum concentration has also been reported during this event;
- Iron (1.2mg/L) levels are now below the concertation at upgradient well GW6, decreasing considerably since the previous monitoring event;
- pH levels (6.69 pH units) are considerably above upgradient wells and represent a rew maximum during current event. pH also exceeded the adopted WQO;
- Potassium (10mg/L) remains above both upgradient wells however has not increased above historical data;
- Sulphate (45mg/L) remains above both upgradient wells and represente a new maximum concentration during the monitoring event; and
- Whilst TOC (4mg/L) remains above both upgradient wells, there is only 1-2mg/L difference from the upgradient wells.

6.1.6.3 Downgradient well – GW3

The majority of monitored parameters at down-gradient (Wordle not exceed the statistical assessment criteria, except for the following:

Chloride (175 mg/L) exceeded the X+3s control / infe) quiteria.

Concentrations of parameters, including where WCOs were exceeded, were consistent with background concentration ranges and/or with recent concentration ranges and/or with recent concentration ranges with the exception of:

- Ammonia (0.02mg/L) remains above both upgradient wells however only a small concentration was detected.
- Whilst Copper (0.00 kmg/L) was detected and remains above upgradient wells, the concentrations has decreased considerably since the peak of the increasing trend in May 2020;
- pH (4.93 pH) remains above upgradient wells however a potentially decreasing trend is noted;
- Chloride levels (175mg/L) increased above historical data during the current monitoring round and reported a new historic maximum for this site. Whilst remains above upgradient well GW5, the concentration remains well below GW6;
- Phosphorus levels (0.46mg/L) remain higher than all upgradient and downgradient wells, however have decreased since the recent peak in May 2020; and

Whilst TOC (4mg/L) remains above both upgradient wells, there is only 1-2mg/L difference from the upgradient wells.

Summary of potential landfill impact on groundwater

Wells were sampled in August 2020. New maximums were reported at downgradient locations for:

- o GW2 for Calcium (56mg/L), pH (6.69 pH) and Sulphate (45mg/L); and
- GW3 for Chloride (175mg/L).

8.1.7

Whilst concentrations exceeding the adopted WQOs were reported, results were consistent with background data with the exception of:

- GW1 for Nitrate, pH, Potassium and Sulphate;
- BW2 for Arsenic, Calcium, Iron, pH and Sulphate
- GW3 for Copper and Chloride .

Ammonia levels have decreased at all upgradient and downgradient wells (with the exception of GW1 (0.01mg/L) during the current monitoring round and do not exceed any WQOs Ammonia levels have fluctuated historically, indicating that these results may be related to natural variation, rather than landfill impacts.

In addition to low Ammonia levels, Iron (filtered) decreased at all groundwater wells with the exception of GW6 (upgradient well). Iron has gradually increased at this groundwater well since February 2020 monitoring event, indicating a possible increasing trend. Given this well is upgradient of the former landfill cell, it is not expected to be impacted by landfill leachate.

pH, an important consideration for acid frog habitat downstream of the former landfill, was noted to be higher at downgradient wells (4.93 - 6.69) than upgradient wells (3.8 - 4.59). Historical pH levels appear to fluctuate and be influenced by rainfall events at GW2 and GW3, and to a lesser extent at GW1, suggesting the soil profile at these locations may be more permeable to surface water inputs and/or impacted by historical landfilling on the site.

6.2 SURFACE WATER RESULTS

6.2.1 Monitoring location descriptions

The details of the surface water locations and field observation have been summarised in Table 9.

Table 9. Surface water locations and sample descriptions

	Location ID	Location Description	Sample description
	Background sur	face water monitoring locations	
	CISW2	Background potential Wallum frog habitat	Tannin-stained colour. Large
		Background, potential Wallum nog nabitat	particles present, no odour.
	CHCINTS!	Rackaround, potential Wallum frog habitat	Tannin-stained colour. Large
\sim		Background, potential Wallum nog nabitat	particles present, no odour.
\sim	CISWA	Pookaround	Low water level, with an oily film.
) (0101/14	Background	Light brown in colour, no odour.
	Downstream sur	face water monitoring locations	
_	CISW/1	Downstream of former landfill	Light brown in colour, small-medium
>	010101		particles.

Location ID	Location Description	Sample description
CISW5	Downstream of former landfill	Light brown in colour, with small particles.

6.2.2 Background surface water results

6.2.2.1 Surface water sites – CISW2, CISW3, CISW4

WQO exceedances for background sites CISW2, CISW3 and CISW4 are summarised in Table 10 below. WQO exceedances at CISW2, CISW3 and CISW4 are considered to represent background conditions and are not considered to represent impact from the former landfill but are included for comparative purposes.

Table 10. Exceedances of WQOs Upstream Surface Water Sites

	Parameter	Units	FVs	WIDOS	C	urrent Resu	ult
		Units	LVS		CISW2	CISW3	CISW4
			GHD 2018 Coochiemudo	3.53			
		nН	Island wetland	4.61			
	рН	pi i Unito	Moreton Bay - Schedule 1		4.91	4.91	5.47
		Units	EPP (water) - Wallum/Tannin	6.5 – 8			
			Freshwater				
			Moreton Bay - Schedule 1				
	DO	%Sat	EPP (water) - Wallum/Tannin	85-110	64.4	52.4	37.8
			Freshwater				
	EC	uStem	GHD 2018 Coochiemudlo	90	418	284	362
			Island wetland				•••=
		\bigcirc	ANZECC 2000 FW 99% -				
		(\bigcirc)	applicable to CISW2 and	0.027			
	Aluminium		CISW3 only		0.40	0.22	0.26
		Julià\r	ANZECC 2000 Fresh water		0.40	0.22	0.20
•	\sim		Slightly-moderate disturbed	0.055			
$\langle \rangle$	$\langle \bigcirc \rangle$		system				
$\langle \rangle$	\sim		ANZECC 2000 FW 99% -				
	Arsenic	mg/L	applicable to CISW2 and	0.0008	0.001	N/A	0.002
$\langle \rangle$	\checkmark		CISW3 only				

Daramotor	Unite	EV/s	WOOc	C	Current Result			
Falailletei	UTIILS	LVS	WQUS	CISW2	CISW3	CISW4		
Nitrogen		Moreton Bay - Schedule 1				(
(total)	mg/L	EPP (water) - Wallum/Tannin	0.5	1.5	1.6	0.7		
(total)		Freshwater			\Diamond	$\langle \langle \mathcal{S} \rangle$		
		ANZECC 2000 FW 99% -						
		applicable to CISW2 and	0.00001		(7	5) Č		
Chromium	mg/L	CISW3 only		0.002	0.002	0.003		
		ANZECC 2000 Fresh water			\sim			
		Slightly-moderate disturbed	0.001	\frown	\sim			
		system		$\langle \rangle$	>			
Iron	mg/L	Schedule 1 EPP (water) -	0.05	4,33	4.73	2.09		
		Drinking Water	$Q_{()}$	\mathcal{O}				
		Moreton Bay - Schedule 1	\sim					
Phosphorus	mg/L	EPP (water) - Wallum/Tannin	~0.05°	0.08	0.08	N/A		
		Freshwater	07					
		ANZECC 2000 FW 99%						
		applicable to CLSVV2 and	0.0024					
Zinc	mg/L	CISW3 only		0.010	0.007	0.013		
		ANZECC 2000 Fresh water	0.000					
		Slightly-inoderate disturbed	0.008					
		system						

Note: * N/A Indicates that the result from that sampling location did not exceed any guidelines and thus not included in the exceedance table

Comparison of the current surface water results at CISW2, CISW3 and CISW4 against recent data indicates all parameters were consistent and were within ranges reported historically with the exception of:

COD decreased considerably at CISW2, CISW3 and CISW4 but remain with historical data;

FC increased above historical data for CISW2 (418 μ /S), reaching a new maximum at this location and exceeding the adopted WQOs;

Chloride increased above historical data for CISW4 (95mg/L) and reported a new historic maximum;

pH increased above historical data for CISW5 (6.18 pH units) and represents a new maximum at this location. The adopted WQOs for pH were again exceeded at this location;

- Sodium increased above historical data and reported new historic maximums for CISW4 (57mg/l) and CISW2 (51mg/l);
- Magnesium increased above historical data and reported a new historical maximum at CISW (10mg/L) and CISW4 (9mg/L);
- Sulphate increased above historical maximums at CISW2 (58mg/L) and CISW4 (38mg/L)

Despite these parameters reaching new maximum concentrations, their levels were below the adopted WQOs, and therefore are not considered a risk at this stage.

6.2.3 Downstream Surface Water Sampling Results

WQO exceedances for downstream surface sites CISW1 and CISW5 are summarised in Table 11 below.

	Parameter	Units	EVs	WQOs	Current Result	
					CISW1	CISW5
			GHD 2018 Coochiemudlo Island wetland	3.53-		
	На	рН		4.61	6.46	6.18
	r	Units	Moreton Bay - Schedule Y EP (water) - Wallum/Tannin Freshwater	6.5 – 8		
	Chromium	~~/l	ANZECC 2000 CW 99% - applicable to CISW2 and CISW3 only	0.00001	0.001	0.002
	Chronnan	IIIg/L	ANZECC 2008 Presh water Slightly- moderate disturbed system	0.001	0.001	
	DO	%Sat	Moreton Bay - Schedule 1 EPP (water) - Wallum/Fannin Freshwater	85-110	42.1	36
Ì			GHD 2018 Coochiemudlo Island wetland	90		
	EC	US/cm	Moreton Bay - Schedule 1 EPP (water) - Wallum/Tannin Freshwater	626	681	96.9
	Ammonia	ng/L	Moreton Bay - Schedule 1 EPP (water) - Wallum/Tannin Freshwater	0.02	N/A	0.03
\langle	Aluminium	ma/l	ANZECC 2000 FW 99% - applicable to CISW2 and CISW3 only	0.027	0.32	0 42
			ANZECC 2000 Fresh water Slightly- moderate disturbed system	0.055		

Table 11. Exceedances of WQOs Downstream Surface Water Sites

Daramatar	Units	EVs	WQOs	Current Result	
				CISW1	CISW5
Arsenic	mg/L	ANZECC 2000 FW 99% - applicable to	0.0008	N/A	0.004
711301110		CISW2 and CISW3 only	0.0000		
	mg/L	ANZECC 2000 FW 99% - applicable to	0.00001		$(\forall S)$
Chromium		CISW2 and CISW3 only	0.00001		0 002
Oniomum		ANZECC 2000 Fresh water Slightly-	0.001		
		moderate disturbed system			
Nitrogen	ma/l	Moreton Bay - Schedule 1 EPP (water) -	0.5		0.6
(total)	iiig/L	Wallum/Tannin Freshwater	0.0		0.0
Iron	mg/L	Schedule 1 EPP (water) - Drinking Water	(8.05)	0.56	3.13
Zinc	mg/L	ANZECC 2000 Fresh water Slightly-	0008	0 000	0.006
2010		moderate disturbed system	0.000	0.000	0.000

6.2.3.1 Surface Water Sites – CISW1 and CISW5

An assessment of the above results for surface water sites CISW1 and CISW5 reveal the following:

- Arsenic (0.004mg/L) at CISW5 was at the highest level of all upgradient and downgradient wells and exceeded the WQOs;
- Ammonia (0.03mg/L) at CISW5 insteased above the upstream locations during the current monitoring event;
- Calcium (32mg/L) at QLSW1 remained above upstream locations during the current monitoring event;
- Chloride (161mg/L) at CISW1 remained above upstream locations during the current monitoring event and a potentially increasing trend may be evident, however is noted to have occurred historically;
- ES (681 µ8/cm) at CISW1 remains above all upstream and the downstream locations, exceeding the adopted WQO (as do all other locations);
- Magnesium (30mg/L) at CISW1 remains above all upstream and the downstream locations but below the historical maximum;
 - ho H (6.18 6.46 pH) at both downstream locations remains above the upstream locations, and represent new maximum concentrations at both locations and exceed the adopted WQOs;

Potassium (15mg/L) at CISW1 remains above the upstream locations and continues to vary during each event;

- Sodium (68mg/L) at CISW1 remains above the upstream locations and continues to vary during each event; and
- Sulphate (101mg/L) at CISW1 remains above the upstream locations and continues to var during each event.

6.2.4 Summary of potential landfill impact on surface water

Ammonia (a key leachate indicator) was detected at low levels during the current sampling event at one downstream location (CISW5 – which also slightly exceeded the WQO) and two upstream sites (CISW2 and CISW4), however these results were all ≤0.03mg/L. Another leachate indicator, Iron, was detected at low levels across all locations, with concentrations at the downstream locations within the range of results from the upstream locations. It is therefore considered unlikely that surface water is impacted by leachate, rather, that these results are due to natural variation in surface water from these locations. Leachate indicator parameters should continue to be monitored to identify any increasing trends.

7.0 CONCLUSIONS

7.1 GROUNDWATER

All groundwater monitoring wells were sampled in August 2020, and results have been assessed for their potential for landfill leachate to impact groundwater by comparing results with the WQOs (as per the EVS in the EPP (Water) 2009), statistical assessment of the dataset and by comparing the (inferred) up gradient and down gradient groundwater quality results.

Statistically significant results were reported in the downgradient groundwater locations for the following parameters:

GW3 for Chloride

Adopted WQOs were exceeded at most up and down gradient locations for pH, EC, Nitrate, Iron and Phosphorus. GW6 was the only groundwater monitoring well to report an exceedance of WQOs for Manganese.

New maximums were reported for several parameters at the following wells:

- GW2 for Calcium (56mg/L), pH (6.69 pH) and Sulphate (45mg/L); and
- GW3 for Chloride (175mg/L).

Ammonia as N had decreased at all up gradient and downgradient wells (with the exception of GW1 (0.01mg/L) since the previous monitoring round and no longer exceed the WQOs. Iron levels (filtered) have decreased since the previous monitoring round with the exception of GW6 (upgradient well), however exceedances of WQOs were reported at GW2, GW3 and GW6. Historically, Iron levels have fluctuated at GW2 which could be related to natural variation within the site.

Levels of leachate indicator parameters varied during the current monitoring round. Ongoing monitoring of these parameters is needed to determine if increased concentration of these parameters is related to landfill impacts or other external factors upstream of the site. However, given the continued low levels of Ammonia and generally low levels of Iron, the former landfill is considered to pose a low risk to groundwater and identified receptors downstream.

pH, an important consideration for acid frog habitat downstream of the former landfill, was noted to be higher at downgradient wells (4.93 - 6.69) than upgradient wells (3.8 - 4.59). Historical pH levels appear to fluctuate and be influenced by rainfall events at GW2 and GW3, and to a lesser extent at GW1, suggesting the soil profile at these locations may be more permeable to surface water inputs and/or impacted by historical landfilling on the site.

7.2 SURFACE WATER

All surface water locations were sampled in August 2020, and results have been assessed for their potential for landfill leachate by comparing results with the WQOs (as per the EVs in the *EPP (Water)* 2009) and by comparing the upstream and downstream surface water quality results.

Ammonia (a key leachate indicator) was detected during the current sampling event at one downstream surface water location, CISW5, and exceeded the WQOs. Another leachate indicator, Iron was detected at most locations; with concentrations at the downstream locations within the range or results from the upstream locations. It is therefore considered unlikely that surface water is impacted by leachate, rather, that these results are due to natural variation in surface water from these locations. Whilst it is considered there is a low risk of landfill leachate impact to surface water, leachate indicator parameters should continue to be monitored to identify any increasing trends.

8.0 RECOMMENDATIONS

Further statistical analysis of the exceedances of key leachate parameters identified in terms of groundwater are recommended to determine if there are significant differences between upgradient and downgradient sampling results and if leachate from the site is potentially impacting on groundwater Further investigations may be warranted if leachate is found to be impacting on downgradient monitoring locations.

The current quarterly monitoring program should continue in order to detect any fature impact of leachate on groundwater and surface waters downgradient and downstream of the former landfill

9.0 REFERENCES

DES (2018) Monitoring and Sampling Manual - Environmental Protection (Water) Policy 2009 (Version Brisbane: Department of Environment and Science, QLD Government), July 2018 EPA Victoria (2015) Best Practice Environmental Management - Siting, Design, Operation Rehabilitation of Landfills (Publication 788.3), August 2015 FPE (2019). Environmental Monitoring Plan, Landfill Environmental Monitoring Program for Redland City Council. (Doc. Ref. 5329-191202-0.1). December 2019. GHD (2018). Landfill Environmental Monitoring Plan Redland City Council (Doc. for Ref.41\24277\WP\479263). November 2018. GHD (2019a). Redland City Council LEMP Environmental Values and Water Quality Objectives. Report Number: 41/27018. December 2019 GHD (2019b). Report for Redland City Council - Coochiemudio Island Former Landfill (Doc. Ref. 41/27018). August 2019 ISO 5667-11 1993 and AS/NZ 5667.11:1998 Water Quality Sampling Guidance on Sampling of Groundwater Standards of Australia/Standards of New Zealand Council, July 1998 Landfill Remediation Kemplay, Ρ. (2015). Birkdale [Online]. Available at: https://news.redland.gld.gov.au/birkdale-landfill-remediation/ [Accessed 20 March 2020]. NSW EPA (2016) Environmental Guidelines, Solid Waste Landfills, Second Edition 2016, April 2016; Queensland Government (2002), State Planning Policy 2/02 Guideline Acid Sulfate Soils (2002). Available at: http://www.dlgrpa.gld.gov.au/resources/policy/spp-guidelines-oct-02-v2.pdf

Appendix A. **Monitoring Locations Plan** 26 August 2020 Coochiemudlo Island Former Landfill -Appendix A

slas	ا دوعط (filtered)	0.0034	 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 	40001
Met	lron (filtered)	0.05	 <0.05 <0.05 <0.08 <0.05 <0.05 	2005 0.71 0.71
	Copper (filtered)	0.0014	<pre><0.001 <0.001 </pre> <pre><0.001 </pre> <pre><0.001 </pre> <pre><0.001 </pre>	0001
	Chromium (filtered)	0.001 0.001	<pre><0.001 <0.001 <0.0</pre>	4000 0000 0000
	Calcium (filtered)	1	60 56 2 1 2	37 8 H
	Cadmium (filtered)	0.0001 0.0002 3.02	 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 	10000 00000 00000
	Arsenic (filtered)	0.013	 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 	
	Aluminimul (filtered)	0.01 0.055	0.01 0.04 0.12 5.71	
F	TOC	1	3 2 4 4 5	
	Sodium (filtered)	1	23 57 16 49 335	
	snjodporus	0.05	 <0.01 <0.08 0.46 <0.01 <0.03 	
Inorganics	Nitrate (as N)	0.158	1.48 0.05 0.02 1.48 <0.01	
	ž Chloride	1	30 132 175 69 763	33 13 13 13 13 13 13 13 13 13 13 13 13 1
	N zs sinommA	0.01 0.9 0.02	0.01 0.01 0.02 0.01 <0.01 	
	Sulfate as SO4 - Turbidimetric - (filtered)	1	115 45 12 25 15	
P	EC (field)	90 626 1,000	501 8.8 8.79	
i i i i i i i i i i i i i i i i i i i	. pH (Field)	3.53-4.61 6.5-8	663 469 3.8	6.00 5.3 5.3
_			0020 0020 0020 0020 0020	
		2	5/08/	
	5		cation Code V1 V2 V3 V5 V5	
	\sim	bed system	00 <u>60 60</u> 10	
	(O)	oderate distur land r) - Wallum/Ta	nitoring Zone wngradient wngradient wngradient fradient fradient	been applied
A	S.	ter Slightly-m. Ilo Island wet e 1 EPP (watei - Drinking Wa		00 er of 0.5 has er of 0.5 has
\searrow		000 Fresh wat Coochiemud Say - Schedule L EPP (water)	udlo Island udlo Island udlo Island udlo Island udlo Island	Concentration inconcentration event Multip
Ţ		EQL ANZECC 21 GHD 2018 Moreton E Schedule 1	Site ID Coochiem Coochiem Coochiem Coochiem Statistics	Matinimum Autoreage + A Non D

			107
			>
0.008 0.008 0.008 0.008 0.008	 40.005 0.006 0.005 0.005 0.015 0.005 0.005 0.005 	907	
→ ఉ Potassium (filtered)	23 31 31 4 4 4 5 3 5 1 3 4 4 5 1 3 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	\rightarrow	
00001 0001000000	 4001 4001 4001 4001 003 0.003 0.003 		
0001 10001 10001	40001 40000000 40000000000		
(banadiii) asansansa (filtered) 1.0 01 0.00 0.00 0.00 0.00 0.00	0001 0000 0000 0000 0000 0000 0000 000		
(binitered) muisangeM	3 3 1 1 1 1 1 1 1 1 1 1		
EZ.	5/08/2020 5/08/2020 5/08/2020 5/08/2020		
disystem disystem for the form	Location Code GW2 CW3 GW3 GW6 GW6		
ignty-moderate disturbe 'and wetland Bioaten - Walum/Tam	Monitoring Zone Downgradient Downgradient Upgradient Upgradient Upgradient 05 has been ap plied.		
EQL AVZECC 2000 Fresh water Si GHO ECOL AVACE CC 2000 Fresh water Si Schedule 1 EPP (water) - Din Schedule 1 EPP (water) - Din	Site ID Coochiemudio Island Coochiemudio Island Coochiemudio Island Coochiemudio Island Matistics Matatistics Matatistics Matatistics Matatistics * A Non Detect Multiplier of * A Non Detect Multiplier of		

	(filtered)	0.001	0.001		0.001	0.002	0.002 0.003	0.002	0.001	0.003	2000		
	Calcium (filtered)	mg/L 1			37	10	8	4	4	32	71		\overline{O}
	(filtered)	mg/L 0.0001	0.00006 0.0002 3.02		0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	50000	C	
	(bərətlif) əinəzrA	mg/L 0.001	0.0008		1000/	0.001	<0.001 0.002	0.004	0.001	0.004	01000	(7Dr	2
	(bərəflif) muinimulA	mg/L 0.01	0.027		0.32	0.40	0.22	0.42	0.22	0.42	700		
	SST	mg/L 5			ť	21	15 10	<5	<5	21	2		
	100	mg/L 1			14	39	44 19	15	14	44	07		
	Sodium (filtered)	mg/L 1			68	51	37 57	14	14	68 A5	2		
	Phosphorus	mg/L 0.01		0.05	100	0.08	0.08	0.05	0.01	0.08	0.040		
	(lstoT) n9gortiN	mg/L 0.1		0.5	70	1.5	1.6 0.7	0.6	0.4	1.6 0 96	000		
Inorganics	Nitrate (as N)	mg/L 0.01	4.9 0.158		10.07	<0.05 ^{#1}	<0.05 - <0.01	<0.01	<0.01	<0.05	CT0.0		
	cop	mg/L 10			75	143	185 46	45	34	185 a1	76		
	Chloride	mg/L 1			161	86	64 95	22	22	161 86	8		
	BOD	mg/L 2			?	- m	4 2	2	2	4	717		
	N 26 sinommA	mg/L 0.01	0.32	0.02	1007	0.01	<0.01	0.03	0.01	0.03	770		
	Sulfate as SO4 - Turbidimetric (filtered)	mg/L 1			101	8	38	Ç	~	101		\sum	
_	DO % Saturation (Field)			85-110	1 07	64.4	~(36,0	64			
	EC (field)	μS/cm	90	626 1,000		4/8	362	96.9	96.9	681	000		
	(Field)	•	3.53-4.61	s-3		4.91	4.91 5.47	6.18	4.91	6.46 5.6	0.0		
			52			/2020	/2020	/2020					
	Ę	X	\sim	ter	e Date	5/08	5/08, 5/08,	5/08,					
	\sim	\mathbb{N}	ed system	nnin Freshwat	Location Cod	CISW2	CISW3 CISW4	CISW5				Analyte LOR	
0			JSW2 and CIS lerate disturb nd	- Wallum/Tai er	g Zone			ε			en applied.	n Requested.	
\sim	SU		pplicable to r Slightly-moo	1 EPP (water) Drinking Wate	Monitorin	Upstream	Upstream Upstream	Downstrea			r of 0.5 has be	rof 0.5 has b is higher tha	
$\langle \langle \zeta \rangle$		1000 1111 0	0 F W 99% - 0 0 Fresh wate oochiemudlo	y - Schedule :PP (water) - I	to Island	allo Island	dio Island Jio Island	dlo Island	oncentration	Concentration *	ect Multiplier	ect Multiplie I Analyte LOF	
\checkmark		EQL	ANZECC 200 ANZECC 200 GHD 2018 C	Moreton Ba Schedule 1 E	Site ID	Coochiemue	Coochiemu	Coochiemu	Minimum C	Maximum (* A Non Det	* A Non Dei Comments #1 Reportec	

																		75)	
																6	P)	
														<		Ž)	07		
															73)	$\widetilde{\boldsymbol{\mathcal{F}}}$			
														\sum	7				
												$\langle \langle$	\searrow	~					
	(ap. 1911) and 5	05	80		09 10 13	8	6			<	\sim	\bigcirc	\checkmark						
	Potassidi (filtered)	1 0.0	0:0		15 0.0 6 0.0 8 0.0	<1 0.0	15 0.0 6.3 0.0			22	\leq	>							
	ي قر Nickel (filtered) -	0.001 0.008	0.011		 <0.001 0.001 0.001 <0.001 	0.001	0.001			50	7								
	الله Mercury (filtered) B	0.0001			<0.0001 <0.0001 <0.0001 <0.0001	<0.001	<0.0001		\bigcirc	\rightarrow									
	Manganese (filtered) E M	0.001	1.9	0.05	0.008 0.036 0.043 0.019	0.008	0.043	$\langle \rangle$	>`										
	, Magnesium (filtered)		4		9 6 6 10		11	J											
Metals	د المار (mered)	0.00:	0.003	05	60 0.00 0	56 <0.00	0.00												
	ے درم (filtered) عالمہ (filtered)	0.001 0.	.0014	0	0.001 0. 0.001 4. 0.001 2.	0.001	0.001 4.												
L		ζ			2020 2020 2020 2020														
	5		クき		de Date 5/08/ 5/08/ 5/08/			~											
		d CISW3	sturbed system (1/Tannin Freshw		Location Co CISW1 CISW2 CISW3 CISW4		- D	ted Analyte LOF											
	\bigcirc	ble to CISW2 an	tly-moderate dis d wetland (water) - Wallum	ng Water	nitoring Zone vnstream tream tream		5 has been appli	ner than Reques											
$\langle \rangle_{r}$		W 99% - applica.	resh water Sligh hiemudlo Islan chedule 1 EPP ((water) - Drinki	Reland Dov Island Dov Island Ups Sland Ups	entration	centration htration * Multiplier of 0.5	alyte LOR is high											
\searrow		EQL ANZECC 2000 F.	ANZECC 2000 F. GHD 2018 Cooc Moreton Bay - 5	Schedule 1 EPP	Site ID Coochiemudlo Coochiemudlo Coochiemudlo	Statistics Minimum Conc	Maximum Con Average Conce * A Non Detect	Comments #1 Reported An											

1			
	o a 1001 101 101 101 101 101 101 101 101		
	Active (filtered) Active (0.05 L	2.06 1 1	\overline{O}
	. Copper (filtered) . Copper (filtered)	0 0000	\mathbb{C}
	E Calcium (filtered) 유		907
	0.000 2.000 2.0001		3)
	0.01 0.01 0.01	0.26	-
	در لغ الح الح الح الح الح الح الح الح الح الح		
	월 1 1		
	a 2001 (filtered) 2001 (filtered)		
	sunortagenerus 1001 0.01		
	O.1 1. 1.		
	n organic norganic mg/L 0.01		
	ු (COD	(t) timery (abo	
	⊐ Chloride	96 30 (> 20 × 1 3 = 1 3	
	3 CT	(a) - a - a - a - a - a - a - a - a - a -	
	N se sinommA E 1/2 1/2		
	Sulfate as SO4 - Bulfate as SO4 - Turbidimetric Hilitered)	31 33 33 33 33 33 33 33 33 33 33 33 33 3	
		pe minule ran	
		Matrix 17 Bay Andrew College (College) Matrix 10 Andrew College)	
	ζ	nethods vary	
	\sim	Date of the second seco	
		tere a concert er QAQC Prof	
[r		Field ID Sw0A Sw	
\sim	$\left \right\rangle$	1 1 1 1 d RPDs are bit b Duplicates	
	EQL	Lad Repo EB20625 RPD ha **Flevate ***Interia	

		~	
	<		
	Ĩ		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
s, Any mei			
Matrix Type			
And the second s			
Field ID Field ID Field ID Field ID Field CPC Fighted as per QACC PrC Fighted as per COACC PrC			
ECI. Lab Report Number Lab Report Number EB2020621 RPD5 have only been co *RPD5 have only been co ***Interlab Duplicates ai			

Appendix C. Groundwater Statistical Charts Appendix C 26 August 2020 Coochiemudlo Island Former Landfill -

8/20/2020

Chemistry Graph

The report was generated based on the following filter:

- Chem Names In "Zinc,Ammonia as N,Arsenic,Cadmium,Calcium,Chromium (III+VI),Copper,EC (field),Iron,Lead,Magnesium,Manganese,Nitrate (as N),pH
- (Field),Potassium,Sodium,Sulfate as SO4 -
- Turbidimetric, TOC, Phosphorus, Nickel, Mercury, Chloride, Aluminium",
- Date between "01 Jan 2010" and "19 Aug 2020",
- Field or Lab Data "Both",
- Projects In "Redland Landfills",
- Sites In "Coochiemudlo Island",
- Locations In "undefined"

8/20/2020

ESdat - Reports: Chemistry Graph

Magnesium (Filtered)

Well ID: GW2

50 45 40 35 mg/L 30 25 20 15 10 Jul 2019 Jan 2020 Jul 2018 Jan 2019 Jul 2020 Manganese (Filtered) 0.045 0.04 0.035 0.03 0.025 mg/L 0.02 0.015 0.01 0.005 0 Jul 2018 Jul 2019 Jan 2020 Jul 2020 Mercury (Filtered) _ - - -160µ 140µ 120µ 100µ mg/L 80µ 60µ 40µ Jul 2018 Jan 2019 Jul 2019 Jul 2020 Jan 2020

The report was generated based on the following filter:

- Chem Names In "Zinc,Ammonia as N,Arsenic,Cadmium,Calcium,Chromium (III+VI),Copper,EC (field),Iron,Lead,Magnesium,Manganese,Nitrate (as N),pH
- (Field),Potassium,Sodium,Sulfate as SO4 -
- Turbidimetric, TOC, Phosphorus, Nickel, Mercury, Chloride, Aluminium",
- Date between "01 Jan 2010" and "19 Aug 2020",
- Field or Lab Data "Both",
- Projects In "Redland Landfills",
- Sites In "Coochiemudlo Island",
- Locations In "undefined"

The report was generated based on the following filter:

- Chem Names In "Zinc,Ammonia as N,Arsenic,Cadmium,Calcium,Chromium (III+VI),Copper,EC (field),Iron,Lead,Magnesium,Manganese,Nitrate (as N),pH
- (Field),Potassium,Sodium,Sulfate as SO4 -
- Turbidimetric, TOC, Phosphorus, Nickel, Mercury, Chloride, Aluminium",
- Date between "01 Jan 2010" and "19 Aug 2020",
- Field or Lab Data "Both",
- Projects In "Redland Landfills",
- Sites In "Coochiemudlo Island",
- Locations In "undefined"

8/20/2020

ESdat - Reports: Chemistry Graph

Magnesium (Filtered)

Well ID: GW5

6.5 6 5.5 5 mg/L 4.5 4 3.5 3 Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020 Manganese (Filtered) 0.0045 0.004 0.0035 mg/L 0.003 0.0025 0.002 0.0015 0.001 Jul 2018 Jul 2019 Jan 2020 Jul 2020 Mercury (Filtered) 160µ 140µ 120µ 100µ mg/L 80µ 60µ 40µ Jul 2018 Jan 2019 Jul 2019 Jan 2020 Jul 2020

The report was generated based on the following filter:

- Chem Names In "Zinc,Ammonia as N,Arsenic,Cadmium,Calcium,Chromium (III+VI),Copper,EC (field),Iron,Lead,Magnesium,Manganese,Nitrate (as N),pH
- (Field),Potassium,Sodium,Sulfate as SO4 -
- Turbidimetric, TOC, Phosphorus, Nickel, Mercury, Chloride, Aluminium",
- Date between "01 Jan 2010" and "19 Aug 2020",
- Field or Lab Data "Both",
- Projects In "Redland Landfills",
- Sites In "Coochiemudlo Island",
- Locations In "undefined"

The report was generated based on the following filter:

- Chem Names In "Zinc,Ammonia as N,Arsenic,Cadmium,Calcium,Chromium (III+VI),Copper,EC (field),Iron,Lead,Magnesium,Manganese,Nitrate (as N),pH
- (Field),Potassium,Sodium,Sulfate as SO4 -
- Turbidimetric, TOC, Phosphorus, Nickel, Mercury, Chloride, Aluminium",
- Date between "01 Jan 2010" and "19 Aug 2020",
- Field or Lab Data "Both",
- Projects In "Redland Landfills",
- Sites In "Coochiemudlo Island",
- Locations In "undefined"

Appendix D. Groundwater Graphs Coochiemudlo Island Former Landfill -26 August 2020 Appendix D

Page 97 of 150

Appendix E. Surface Water Graphs Appendix E 26 August 2020 Coochiemudlo Island Former Landfill -

Page 106 of 150

Page 107 of 150

Page 110 of 150

Page 111 of 150

Page 112 of 150

Page 116 of 150

Appendix F. Laboratory Analysis Results and QA/QC Reports 26 August 2020 Coochiemudlo Island Former Landfill -Appendix F

RECEIVED BY:	DATE TIME:		Yes No N/A	Yes No N/A	Q														(The second seco	A st A
INQUISHED BY:	E TIME:	DNLY (Circie)		icks present upon receipt?	perature on Receipt:)						
REL	DAT	ABORATORY USE (ustody Seal intact?	ee ice / frozen ice br	andom Sample Temi ther comments			IRED	ADDITIONAL INFORMATION			A A		\leq						
ECEIVED BY:	ATE TIME:	Jays U	Ő	Ŀ	07 5357 Rt			ANALYSIS REQU	ALTERNATIVE ANALYSIS Table 19: Groundwater - Coochiemudio Is - Quartery	2/2/2		>) ×	×	×						
R		TS: 5 [WATER Table 18: Surface Water Coochiemudio Is Quarterly WATER	07 }	-				×	×	×	×		
		JUIREMEN			SAMPL					0 No	N N N	0 No	°N N	o No	N N O	oN 0	°N N	oN 0		
UISHED BY	ME:	OUND REC		into:	5357 9463				Reputers of the second se	ALS: 4 Non ALS: 1	ALS: 4 Non ALS: 1	ALS: 4 Non ALS:	ALS: 4 Non ALS:	ALS: 4 Non ALS:	ALS: 5 Non ALS:	ALS: 5 Non ALS:	ALS: 5 Non ALS:	ALS: 5 Non ALS:		
RELINQ	DATE TI	TURNAR(- - i	Biohazard	T PH: 07.5		<		MATRIX	Water										
					CONTACT	6)		DATE / TIME	05/08/2020 08:02 AM	05/08/2020 08:03 AM	05/08/2020 08:00 AM	05/08/2020 06:43 AM	05/08/2020 08:50 AM	05/08/2020 09:43 AM	05/08/2020 10:28 AM	05/08/2020 10:32 AM	05/08/2020 09:18 AM		
Yac	Laboratory: EB Brisbane		1×1-200805	22///			J	SAMPLE DETAILS	DESCRIPTION											
HAIN OF CUSTC		Rediands Landin	Coochiemud NS Close		MANAGER: Nicholas Ev	ORTS TO:	DICES TO:		NAME	GW1	GW2	GW3	GW5	GW6	CISW1	CISW2	CISW3	CISW4		
C	A L'S) CO	ROJECT:	SITE:	JRDER NO	PROJECT N	PRIMARY S EMAIL REP	EMAIL INVC		SAMPLE	001	002	003	004	005	006	007	008	600		

RECEIVED BY:	DATE TIME:		Yes No N/A ipt? Yes No N/A	Ģ									
RELINQUISHED BY:	DATE TIME:	DRY USE ONLY (Circle)	sal intact? ozen ice bricks present upon rece	ample Temperature on Receipt: nents:			ORMATION						
RECEIVED BY:	DATE TIME:	5 Days LABORAT	Custody Se Free ice / fr	SILE: 07 5357 Random Sc 2019FUPE0003 Other comr	1	ANALYSIS REQUIRED	유 호 ALTERNATIVE ANALYSIS Table 19: Groundwater - Coochiemudio Is - Quarterly WATER	0/2/2			\nearrow		
LINQUISHED BY:	TE TIME:	NAROUND REQUIREMENTS :	azard info:	: 07 5357 9463 SAMPLER MOE 3N/235/18 B V12 / EB:			Table 18: Surface Water Coochiemudio Isi Quarterly WATER	Vater ALS: 5 No X	Vater ALS: 5 No X Non ALS: 0	Vater ALS: 5 No X Non ALS: 0	Vater ALS: 5 No X Non ALS: 0		
RE	v: EB Brisbane DA	TUR	805 Bioh	CONTACT PH:		MPLE DETAILS	SCRIPTION DATE / MP	05/08/2020 W 09:44 AM	05/08/2020 W 05:12 PM	05/08/2020 W 05:22 PM	05/08/2020 W 09:19 AM	·	
AIN OF CUSTODY	HIT INC. ALS Laborator.	Rediands Landin	Coochiemudio & Crosed (9-200	ANAGER: Nicholas Evans	JRTS TO:	ICES TO:	DE	CISW5	Rinstate	Blank	SWQA		
CH CH	COC COC		SITE:	PROJECT M.	EMAIL REPC	EMAIL INVO	SAMPLE	010	011	012	013		Dogo

NQUISHED BY: RECEIVED BY: ETIME: DATE TIME:		DNLY (Circle)	Yes No N/A	cks present upon receipt? Yes No N/A	erature on Kecelpt:			E FILTERED REASON	Yes	le No	No	No	No	le No	Yes	le No	no No	le No	le No	Yes	no No	No	Yes	No No	Yes		ie No				le No O	Thes which we have a second seco	Ile No No
DBY: RELI		LABORATORY USE (Custody Seal intact?	Free Ice / Trozen Ice Dr	7 Random Sample Temp 03 Other comments:			BARCODE TYP	00122002073359 Rec	00101219018625 Purp	00071119206961 Gree	00180220036593 Purp	00071119206971 Gree	00101219019245 Purp	00122002090382 Rec	00180220036651 Purp	0077419207005 Gree	00105219018660 Purp	00/80220086672 Purp	00(220020)3373 Rec	000X1119206979 Gree	00101219018695 Purp	00122002073377	00180220036631 Puh	00122002073393	00180220036569 Purp	00101219019258 Purp	00071119206946 Gree	00071119207009 Gree	00070519138793 Gree	00180220036469 Purp	00122002090475 Re	00101219019261 Purp
RECEIVED DATE: TIM		IENTS : 5 Days			MPLER MOBILE: 07 535 / EB2019FUPE00			VOLUME	60 mL	60 mL	250 mL	40 mL	250 mL	s Tur ob				60 KN	40 mL	60 mL	250 mL	60 mL	60 mL	40 mL	80 mL	40 mL	60 mL	250 mL	250 mL	250 mL	40 mL	60 mL	60 mL
RELINQUISHED BY: De DATE TIME:		TURNAROUND REQUIREM	Biohazard info:		CONTACT PH: 07 5357 9463 SAM		\diamond	BOTYLEALAME	lear Plastic Bottle - Which Acid, Finered	Clear Plastic Bottle - Solidnip April	Clear Plastic Bottle - Natural	Amber TOC Vial - Sulfuric Acid	Clear Plastic Bottle - Natural	Clear Plastic Bottle - Sulfuric Acid	fear Plastic Bottle - Nitric Acid; Filtered	Amber TOC Vial - Sulfuric Acid	Clear Plastic Bottle - Natural	Clear Plastic Bottle - Sulfuric Acid	Amber TOC Vial - Sulfuric Acid	fear Plastic Bottle - Nitric Acid; Fittered	Clear Plastic Bottle - Natural	Clear Plastic Bottle - Sulfuric Acid	lear Plastic Bottle - Nitric Acid; Filtered	Amber TOC Vial - Sulfuric Acid	lear Plastic Bottle - Nitric Acid; Filtered	Amber TOC Vial - Sulfuric Acid	Clear Plastic Bottle - Sulfuric Acid	Clear Plastic Bottie - Natural	BOD Bottle Unpreserved	Clear Plastic Bottle - Natural	Amber TOC Vial - Sulfuric Acid	lear Plastic Bottle - Nitric Acid; Filtered	Clear Plastic Bottle - Sulfuric Acid
ALS Laboratory: EB Brisban	E- FUTUREPLUS ENVIRONMENTAL		hiemud ols Crosed LF - 200805	$\sum \frac{1}{2}$	iER: Nicholas Evans 🗸 🎸 🗲	TO:	TO:	MPLE NAME	GW1 CI	GW1	GW1	GW1	GW2	GW2	GW2 Ck	GW2	GW3	GW3	GW3	GW3 CI	GW5	GW5	GW5 CI	GW5	GW6 CI	GW6	GW6	GW6	CISW1	CISW1	CISW1	CISW1 CI	CISW1
CHAIN COCHE		BROJECT: Redli	SITE: Cooc	ORDER NO:	PROJECT MANAC	EMAIL REPORTS	EMAIL INVOICES	SAMPLE SA	001	001	001	001	002	002	002	002	003	003	003	003	004	004	004	004	005	005	005	005	006	006	006	006	900

			A A	A'																														
RECEIVED BY:	DATE TIME:		Yes No N	Yes No N	Ņ																													
ED BY:		rcie)		ent upon receipt?	on Receipt:			No	No	No	No	Yes	No	No	No	No	No	No	Yes	No	No	No	No	Yes	No	No	°N N	No	Sey	() 2) 2)	> > \$	ON	P oN	No
RELINQUISH	DATE TIME:	J Strain (Ci	al intact?	izen ice bricks prese	mple Temperature c	ients:		Purple	Purple	Green	Green	Red	Purple	Purple	Green	Green	Purple	Purple	Red	Green	Green	Green	Green	Key .	Purple	- Purple	Geen	Green	Red	Purple	Purple	Green	Green	Purple
ED BY:	ME:	LABORATO	Custody Sec	Free ice / fro	357 Random Sai	003 Other comm		00101219019287	00180220036714	00071119206985	00071119207015	00122002090485	00180220036701	00101219019273	00071119206999	00071119206984	00101219019254	0180220036715	00122002073348	0007/119286996	0007/119207/01	000×1119206965	00071119206989	00122002073326	00101219019331	00180220036647	00071119207014	00071119207012	00122002090465	00180220036492	00101219019281	00071119206978	00071119207006	00101219019286
RECEIV	DATE TI	5 Days			NOBILE: 07 5	EB2019FUPE(60 mL	40 mL	250 mL	250 mL	- 60 mL	40 mL	60 mL	250 mL	250 ml	(Janes /		60 MJ	250 mL	250 mL	250 mL	250 mL	60 mL	60 mL	40 mL	250 mL	250 mL	60 mL	40 mL	60 mL	250 mL	250 mL	60 mL
RELINQUISHED BY:	DATE TIME:	TURNAROUND REQUIREMENTS :		Biohazard info:	T PH: 07 5357 9463 SAMPLER I	IO: BN/235/18 B V12 /	<	ttle - Sultaric Acid	al Syffurig Apid	Unpreserved > >	Bottle - Matural	Nitric Acid; Filtered	ial - Sulfuric Acid	ittle - Sulfuric Acid	Unpreserved	Bottle - Natural	ttle - Sulfuric Acid	ial - Sulfuric Acid	- Nitric Acid; Filtered	Unpreserved	Bottle - Natural	Unpreserved	Bottle - Natural	- Nitric Acid; Filtered	ottle - Sulfuric Acid	ial - Sulfuric Acid	Unpreserved	Bottle - Natural	e - Nitric Acid; Filtered	ial - Sulfuric Acid	ottle - Sulfuric Acid	Unpreserved	Bottle - Natural	ottle - Sulfuric Acid
X	boratory: EB Brisbane		-200805	22	SUNAC CONTAC			Clear Plastic Bo	Amber TOCV	BOD Bottle	Clear Plastic	Clear Plastic Bottle	Amber TOC VI	Clear Plastic Bo	BOD Bottle	Clear Plastic	Clear Plastic Bo	Amber TOC V	Clear Plastic Bottle	BOD Bottle	Clear Plastic	BOD Bottle	Clear Plastic	Clear Plastic Bottle	Clear Plastic Bo	Amber TOC V	BOD Bottle	Clear Plastic	Clear Plastic Bottle	Amber TOC V	Clear Plastic Bo	BOD Bottle	Clear Plastic	Clear Plastic B
HAIN OF CUSTOL	CH. 13696 ALS La	Rediands Langfill	Coochiemud No. Closed		IANAGER: Nicholas Evan	AMPLER: Nicholas Evan		CISW2	CISW2	CISW2	CISW2	CISW3	CISW3	CISW3	CISW3	CISW3	CISW4	CISW4	CISW4	CISW4	CISW4	CISW5	CISW5	CISW5	CISW5	CISW5	Rinstate	Rinstate	Rinstate	Rinstate	Rinstate	Blank	Blank	Blank
ゥ v to			SITE:	ORDER NO:	PROJECT M	PRIMARY S,		007	007	007	007	008	008	. 800	008	008	600	600	600	600	600	010	010	010	010	010	011	011	011	011	011	012	012	012

RECEIVED BY:	DATE TIME:		Yes No N/A	Yes No N/A	Q										3
ED BY:		cle)		nt upon receipt?	n Receipt:		Yes	No	Yes	No	No	No	No		
RELINQUISHE	DATE TIME:	RY USE ONLY (Cir	intact?	zen ice bricks prese	nple Temperature or ents:		Red	Purple	Red	Purple	Purple	Green	Green		
D BY:	Ë	LABORATO	Custody Seal	Free ice / froz	57 Random Sam 03 Other comme		00122002090483	00180220036692	00122002090453	00180220036467	00101219019277	00071119206972	00071119206974		
RECEIVE	DATE TIM	5 Days			1081LE: 07 535 EB2019FUPE00		60 mL	40 mL	60 mL	40 mL	60 mL	250 mL	250 mL		
RELINQUISHED BY:	DATE TIME:	TURNAROUND REQUIREMENTS :	Biohazard info:		TACT PH: 07 5357 9463 SAMPLER M TE NO: BN/235/18 B V12 / E	<	Bottle - Mitric Azid: Filtered	Dowal Symbol Apid	3ottle - Miric Kcid, Fikeres	DC Vial - Sultrific Acid	tic Bottle - Sulfuric Acid	Sottle Unpreserved	astic Bottle - Natural	I Bottle Count: ALS: 60, Non ALS 0	
ODY	s Laboratory: EB Brisbane		eo/1 - 200805	22/1/2	vans V C 53 CONT		Clear Plastic B	Amber TO	Clear Plastic B	Amber TO	Clear Plasti	BOD B	Clear Pla	Total	8:07:00 PM
IAIN OF CUST(C#: 13(96) ALS	Rediands Landin	Coochiemudio		ANAGER: Nicholas Ev AMPLER: Nicholas Ev	ORTS TO:	IICES TO: Blank	Blank	SWQA	SWQA	SWQA	SWQA	SWQA	· ·	August 5, 2020
HO rary to			SITE:	ORDER NO:	PROJECT M PRIMARY S/	EMAIL REPC	EMAIL INVO	012	013	013	013	013	013	Page	Mednesday,

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: WATER

component			45G screte	20F als by	55G By D	58G Disc	87G us a	05 Carb	
Matrix: WATER			- ED0	t - EG03 ed Meta	: - EK05 ia as N	: - EK05 as N by	osphor	EP00 rganic 0	20-M - 1
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER	WATER Dissolve	WATER	WATER Nitrate	VATER Total Pt	WATER Tokel	WATER 8 Metal:
EB2020621-001	05-Aug-2020 08:02	GW1	1	1	1	$\langle \frown \rangle$	\mathbf{Y}	∕ √	1
EB2020621-002	05-Aug-2020 08:03	GW2	1	\checkmark	$\langle \cdot \rangle$) }	✓	1
EB2020621-003	05-Aug-2020 08:00	GW3	1	K	$\langle \cdot \rangle$	~	1	✓	1
EB2020621-004	05-Aug-2020 06:43	GW5	1	X	$\langle \cdot \rangle$	$\mathbf{\nabla}$	1	✓	1
EB2020621-005	05-Aug-2020 08:50	GW6	1	X	Ň	/ 🗸	1	✓	1
EB2020621-006	05-Aug-2020 09:43	CISW1	K	10	7			✓	1
EB2020621-007	05-Aug-2020 10:28	CISW2	X	V	/			✓	1
EB2020621-008	05-Aug-2020 10:32	CISW3	$\langle \rangle$	\searrow				✓	1
EB2020621-009	05-Aug-2020 09:18	CISW4	N/	1				✓	1
EB2020621-010	05-Aug-2020 09:44	CISW5	$\mathbf{\mathbf{y}}$	✓				✓	1
EB2020621-011	05-Aug-2020 17:12	Rinstate	√	✓				✓	1
EB2020621-012	05-Aug-2020 17:22	Blank	1	1				✓	1
EB2020621-013	05-Aug-2020 09:19	swork	1	1				1	1
		$\nabla \langle \nabla \rangle$							

	Matrix: WATER Laboratory sample ID	Client sampling date / time	Client sample ID	WATER - EA025H Suspended Solids - Standard Level	WATER - ED041G Sulfate (Turbidimetric) as SO4 2 by Discrete	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - EP030 BOD	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-08 Total Nitrogen + NO2 + NO3 + NH3 + Total P
	EB2020621-001	05-Aug-2020 08:02	GW1		✓			1	
	EB2020621-008	05-Aug-2020 08:03	GW2		✓			1	
	EB2020621-903	05-Aug-2020 08:00	GW3		✓			1	
\sim	EB2020621-004	05-Aug-2020 06:43	GW5		✓			1	
_~	EB2020621-005	05-Aug-2020 08:50	GW6		✓			1	
)	EB2020021-006	05-Aug-2020 09:43	CISW1	1	1	1	1	1	1
//	EB2020621-007	05-Aug-2020 10:28	CISW2	1	✓	1	1	1	✓
$\langle \langle$	EB2020621-008	05-Aug-2020 10:32	CISW3	1	✓	✓	✓	1	1
	EB2020621-009	05-Aug-2020 09:18	CISW4	1	1	✓	✓	1	1
	EB2020621-010	05-Aug-2020 09:44	CISW5	1	✓	✓	✓	1	1
	EB2020621-011	05-Aug-2020 17:12	Rinstate	1	1	✓	1	1	1
	B				-				

ALS

horus as P By Discrete Analyser

by Discrete Analyser

K055G s N By Discrete Analyser

Discrete Analysei letals by ICP/MS

Issue Date	: 06-Aug-2020
Page	: 3 of 3
Work Order	EB2020621 Amendment 0
Client	: FUTURE-PLUS ENVIRONMENTAL

			WATER - EA025H Suspended Solids - Standard Level	WATER - ED041G Sulfate (Turbidimetric) as SO4 2 by Discrete	WATER - EP026SP Chemical Oxygen Demand (COD)	WATER - EP030 BOD	WATER - NT-01 Major Cations (Ca, Mg, Na, K)	WATER - NT-08 Notal Nitrogen + NO2 + NO3 + NH3 + Total P			2022
EB2020621-012	05-Aug-2020 17:22	Blank	1	1	1	1	1	/1/		-	
EB2020621-013	05-Aug-2020 09:19	SWQA	1	1	✓	1	1	\sim			
									\searrow		

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

	Requested Deliverables	(())	
	ESDAT RESULTS	$\Diamond_{A}(\bigcirc)$	
	- EDI Format - ESDAT (ESDAT)	Email	future-plus@esdat.com.au
	INVOICES	$\langle \chi \rangle > -$	
	- A4 - AU Tax Invoice (INV)	Emai	accounts@future-plus.com.au
	JONO HOOPER	7~~~	
	- *AU Certificate of Analysis - NATA (COA)	∕ <u></u> Email	
	- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QC)	Email	
	- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	
	- A4 - AU Sample Receipt Notification - Environmental HT	Email	
	- A4 - AU Tax Invoice (INV)	Email	
	- Chain of Custody (CoC) (COC)	Email	
	- EDI Format - ENMRG (ENMRG)	Email	
	- EDI Format - XTab (XTAB)	Email	
	KAINE PRITCHARD		
	- *AU Certificate of Analysis - NATA (COA	Email	
	- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	
	- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	
	- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	
	- A4 - AU Tax Invoice (INV)	Email	
	- Chain of Custody (CoC) (COC)	Email	
	- EDI Format - ENMRG (ENMRG)	Email	
	- EDI Format - XTab (XTAB)	Email	
	NICHOLAS EVANS		
	- *AU Certificate of Analysis - NATA (COA)	Email	
	- *AU Interpretive QC Report DEFAULT (Anon QCI Rep) (QCI)	Email	
	- *AU QC Reparty DEFAULT (Anon QC Rep) - NATA (QC)	Email	
	- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	
	- A4 - AU Tax havoise (INV)	Email	
	- Chaip of Custedy (CoC) (COC)	Email	
	- ED/Format ENMRG (ENMRG)	Email	
	- EDI Format XTab (XTAB)	Email	
^	SORHEBLOND		
~	- *AU Certificate of Analysis - NATA (COA)	Email	
	- *ADUnterpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	
	*AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	
_	- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	
2	- Chain of Custody (CoC) (COC)	Email	
1	 EDI Format - ENMRG (ENMRG) 	Email	
	- EDI Format - XTab (XTAB)	Email	

	2 of 7	ED2020621	<i>PUTURE-PLUS ENVIRONMENTAL</i>	8329 Redlands	
1	$\overline{)}$	\mathcal{L}		\langle	>
$\langle \langle$			-	7	•
	Page	Work Orde	Client	Project	

In house developed procedures been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. are fully validated and are often at the General Comments The analytical procedures

Where moisture determination has been performed results are reported on a dry weight basis.

Where a reported less than (<) result is higher Nait the LOIS this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis

be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference. Where the LOR of a reported result differs from standard es are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing When sampling time information is not provided by the client,

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details. purposes

CAS Number = CAS registry number from database maintained by Cytembal Abstrasts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key :

reporting

- LOR = Limit of reporting
- This result is computed from individual analyte detections at or above the ø = ALS is not NATA accredited for these tests.
 - > Indicates an estimated value.
- EK057G (Nitrite as N) / EK059G (Nitrite and Nitrate as N): Some samples were diluted due to matrix his france be LOR adjusted accordingly.
- EP030 (BOD): The analytical BOD nun containing samples from this work order recovered all certified reference standards within the acceptable criteria except for the dilution water blank which was elevated
- Sodium Adsorption Ratio (where reported): Where results for Na, Ca or Mg are <LOR, a concentration at har the reported UOR is incorporated into the SAR calculation. This represents a conservative approach somption that <LOR is equivalent to the LOR concentration. for Na relative to the assumption that <LOR = zero concentration and a conservative approach for Ca & Mg relative to above 0.20 mg/L

		Uient comple II	CM1	CM/2	C10/2	CIME	GMG
Sub-Matrix: GROUNDWATER (Matrix: WATER)	Ę			7440	240	CMD	סאיס
	Client s	sampling date / time	e 05-Aug-2020 08:02	05-Aug-2020 08:03	05-Aug-2020 08:00	05-Aug-2020 06:43	05-Aug-2020 08:50
Compound	CAS NUMBER 10	JR Unit	EB2020621-001	EB2020621-002	EB2020621-003	EB2020621-004	EB2020621-005
			Result	Result	Result	Result	Result
ED041G: Sulfate (Turbidimetric) as SO4 2	2- by DA (
Sulfate as SO4 - Turbidimetric	14808-79-8	1) Mg/L	115	45	12	25	15
ED045G: Chloride by Discrete Analyser))						
Chloride	16887-00-6	1 / mart	30	132	175	69	763
ED093F: Dissolved Major Cations			(
Calcium	7440-70-2	1 / mg//	ا کر کہ وہ	56	Ł	-1	2
Magnesium	7439-95-4	1 mg//	20	25	2	4	57
Sodium	7440-23-5	1 mg/L	et (57	16	49	335
Potassium	7440-09-7	1 mg/L		10	4		2
EG020F: Dissolved Metals by ICP-MS							
Aluminium	7429-90-5 0.	01 mg/L	() / W	0.04	0.12	0.02	5.71
Arsenic	7440-38-2 0.(001 mg/L	<0.001	<0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9 0.0	.001 mg/L	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Chromium	7440-47-3 0.0	001 mg/L	<0.001	9.001	<0.001	<0.001	<0.001
Copper	7440-50-8 0.0	001 mg/L	<0.001	く しる う で し	0.001	<0.001	<0.001
Nickel	7440-02-0 0.0	001 mg/L	<0.001	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.001	<0.001	0.003
Lead	7439-92-1 0.0	001 mg/L	<0.001	× 40 001	<0.001	<0.001	<0.001
Zinc	7440-66-6 0.(305 mg/L	<0.005	0:408	0.007	<0.005	0.015
Manganese	7439-96-5 0.(001 mg/L	0.011	0.001	0.004	0.001	0.135
Iron	7439-89-6 0.	05 mg/L	<0.05	1.20	0.08	<0.05	2.23
EG035F: Dissolved Mercury by FIMS							
Mercury	7439-97-6 0.0	001 mg/L	<0.0001	<0.0001	<a>60.0001	<0.0001	<0.0001
EK055G: Ammonia as N by Discrete Ana	lyser						
Ammonia as N	7664-41-7 0.	01 mg/L	0.01	<0.01	0.02	<0.01	<0.01
EK057G: Nitrite as N by Discrete Analys	er						
Nitrite as N	14797-65-0 0.	01 mg/L	<0.01	<0.01	< / / 10.0>	10:01	<0.01
ΞK058G: Nitrate as N by Discrete Analys	er				J		
Nitrate as N	14797-55-8 0.	01 mg/L	1.48	0.05	0.02	148	<0.01
EK059G: Nitrite plus Nitrate as N (NOx)	by Discrete Analyse	_					
Nitrite + Nitrate as N	0.	01 mg/L	1.48	0.05	0.02	(Cart	<0.01
EK067G: Total Phosphorus as P by Discr	ete Analyser						(0
Total Phosphorus as P	0.	01 mg/L	<0.01	0.08	0.46	<0.01	0.08
EP005: Total Organic Carbon (TOC)						ノ	
Total Organic Carbon	-	1 mg/L	5	4	4	2	2
							> く く

Clien.	Client sampling	CAS NUMBER LOR		ed Solids dried at 104 ± 2°C		idimetric) as SO4 2- by DA	imetric 14808-79-8 1	Discrete Analyser	16887-00-6 1 <	ijor Cations	7440-70-2 1	7439-95-4 1	7440-23-5 1	7440-09-7 1	etals by ICP-MS	7429-90-5 0.01	7440-38-2 0.001	7440-43-9 0.0001	7440-47-3 0.001	7440-50-8 0.001	7440-02-0 0.001	7439-92-1 0.001	7440-66-6 0.005	7439-96-5 0.001	7439-89-6 0.05	ercury by FIMS	7439-97-6 0.0001	s N by Discrete Analyser	7664-41-7 0.01	by Discrete Analyser	14797-65-0 0.01	by Discrete Analyser	14797-55-8 0.01	Vitrate as N (NOx) by Discrete Analyser	0.01	hl Nitrogen By Discrete Analyser
it sample ID CISW1	<i>g date / time</i> 05-Aug-2020 09:43	Unit EB2020621-006	Result		mg/L <5		101 101		🗸 mg/t / 🛠 🗢 161		mg/L 🗸 🔰 💦	mg/L ()	mg/L 66	mg/L (18		mg/L 0.32	mg/L <0.001	mg/L <0.0001	mg/L 0.001	mg/L <0.001	mg/L <0.001	mg/L <0.001	mg/L 0.009	mg/L 0.008	mg/L 0.56		mg/L <0.0001		mg/L <0.01		mg/L <0.01		mg/L <0.01		mg/L <0.01	
CISW2	05-Aug-2020 10:28	EB2020621-007	Result		21		58		86		10	10	51	9	6	0.40	0001	< 21000/0× C) >	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(0.601	0.404	<0.00	0.010	0.036	4.33		<0.0001		0.01		<0.05		<0.05		<0.01	
CISW3	05-Aug-2020 10:32	EB2020621-008	Result		15		25		64		8	9	37	8		0.22	<0.001	<0.0001	0.002	0.001	0.001	<0.001	0.007	0.043	4.73		<0.000.0>		<0.01	ッ ノ	<0.05		<0.05		<0.05	
CISW4	05-Aug-2020 09:18	EB2020621-009	Result		10		38		95		7	6	57	4		0.26	0.002	<0.0001	0.003	0.001	<0.001	<0.001	0.013	0.019	2.09		<0.0001		100				2	2	<0.01	
CISW	05-Aug-2020 09:4	EB2020621-010	Result		<5		~		22		4	3	14	2		0.42	0.004	<0.0001	0.002	<0.001	<0.001	<0.001	0.006	0.019	3.13		<0.0001		0.03		<0.01		<0.01	(0	<0.01	

<		ALS)
		₹

インシン								
Sub-Matrix: SURFACE WAYER (Matrix: WATER)		Client sample	e ID	CISW1	CISW2	CISW3	CISW4	CISW5
	Clier Clier	t sampling date / t	time	05-Aug-2020 09:43	05-Aug-2020 10:28	05-Aug-2020 10:32	05-Aug-2020 09:18	05-Aug-2020 09:44
	AS NUMBER	LOR Unit		EB2020621-006	EB2020621-007	EB2020621-008	EB2020621-009	EB2020621-010
7	2			Result	Result	Result	Result	Result
EK062G: Total Nitrogen as N (TKN + NOx) by	D(scret/ And	Vser						
^A Total Nitrogen as N	+)	1/6W .0(0.4	1.5	1.6	0.7	0.6
EK067G: Total Phosphorus as P by Discrete	Analyser							
Total Phosphorus as P		0.01 0.01		0.01	0.08	0.08	0.02	0.05
EP005: Total Organic Carbon (TOC)				(
Total Organic Carbon		1 / mg/	<u>}</u>	√ 14	39	44	19	15
EP026SP: Chemical Oxygen Demand (Spectr	ophotometric)	\checkmark		(
Chemical Oxygen Demand		10 mg/l		74	143	185	46	45
EP030: Biochemical Oxygen Demand (BOD)				60				
Biochemical Oxygen Demand		2 mg/l		くくなし	3	4	2	<2

Z

Ja-Matrix: SURFACE WAYER		Clien	t sample ID	Rinstate	Blank	SWQA		
	Clier	ıt sampling	date / time	05-Aug-2020 17:12	05-Aug-2020 17:22	05-Aug-2020 09:19		
punodwo;	< CAS NUMBER	LOR	Unit	EB2020621-011	EB2020621-012	EB2020621-013		
				Result	Result	Result		
A025: Total Suspended Solids dried at 1	104 ± 2°c	6						
Suspended Solids (SS)	+) >	5	mg/L	<5	<5	80		
D041G: Sulfate (Turbidimetric) as SO4 2	2- by DA							
Sulfate as SO4 - Turbidimetric	14808-79-8	1	HOM	-1	4	37	-	
D045G: Chloride by Discrete Analyser		>		(
Chloride	16887-00-6	-	> / 7/6w/	<1	4	96		
D093F: Dissolved Major Cations				_(
Calcium	7440-70-2	-	mg/L 🗸		4	7		
Magnesium	7439-95-4	-	mg/L	$\langle \bigcirc \uparrow \bigcirc \rangle$	4	6		
Sodium	7440-23-5	-	mg/L		4	57		
Potassium	7440-09-7	-	mg/L		۲.	⊽		
3020F: Dissolved Metals by ICP-MS					G			
Aluminium	7429-90-5	0.01	mg/L	<0.01	<0.01	0.26		
Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.002		
Sadmium	7440-43-9 (0001	mg/L	<0.0001	< 1000/0× ()	<0.0001		
Chromium	7440-47-3	0.001	mg/L	<0.001	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.002		
Copper	7440-50-8	0.001	mg/L	<0.001	(1000) V	0.001		
Vickel	7440-02-0	0.001	mg/L	<0.001	<0.000	<0.001		
-ead	7439-92-1	0.001	mg/L	<0.001	<0.001	<0.001		
Zinc	7440-66-6	0.005	mg/L	<0.005	<0.005	0.013		
Manganese	7439-96-5	0.001	mg/L	<0.001	<0.001	0.020		
ron	7439-89-6	0.05	mg/L	<0.05	<0.05	2.06		
3035F: Dissolved Mercury by FIMS								
Aercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	<0.000.0>		•
(055G: Ammonia as N by Discrete Anal	lyser							
Ammonia as N	7664-41-7	0.01	mg/L	<0.01	<0.01	<0.01	N / 7-	
(057G: Nitrite as N by Discrete Analyse	er					J		
Vitrite as N	14797-65-0	0.01	mg/L	<0.01	<0.01	<0.01		
(058G: Nitrate as N by Discrete Analys	er							
Vitrate as N	14797-55-8	0.01	mg/L	<0.01	<0.01	<0.01		
(059G: Nitrite plus Nitrate as N (NOx)	by Discrete Analy	ser						(0
Vitrite + Nitrate as N		0.01	mg/L	<0.01	<0.01	<0.01		7
(061G: Total Kjeldahl Nitrogen By Disci	rete Analyser							
Total Kjeldahl Nitrogen as N		0.1	mg/L	<0.1	<0.1	0.8	-	Z

Z

0°

A/QC Compliance Assessmen	nt to assist with	I Quality Review
Work Order	Page	: 1 of 9
Client : FUTURE PLUS ENTRONMENTAL	Laboratory	: Environmental Division Brisbane
Contact : NICHOLAS EVANS	Telephone	: +61 7 3552 8634
Project : 5329 Redlands	Date Samples Received	: 06-Aug-2020
	No. of samples received	: 13-Aug-2uzu : 13
	No. of samples analysed	: 13
This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality reporting highlights any non-conformances, facilitates faster and more accurate data validation a report contribute to the overall DQO assessment and reporting for guideline combiance.	Control Report and several (nd is designed to assist inte	Quality Assurance parameters measured by ALS. This automated rnal expert and external Auditor review. Many components of this
Brief method summaries and references are also provided to assist in traceability		
	<u>_</u>	
Summary of Outliers		
Outliers : Quality Control Samples	(O)57 (S)	
This report highlights outliers flagged in the Quality Control (QC) Report.		
<u>NO</u> Duplicate outliers occur.	\bigcirc	
 <u>NO</u> Laboratory Control outliers occur. <u>NO</u> Matrix Spike outliers occur. 		
• For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.	>	
Outliers : Analysis Holding Time Compliance		
• <u>NO</u> Analysis Holding Time Outliers exist.		
Outliers : Frequency of Quality Control Samples		
<u>NO</u> Quality Control Sample Frequency Outliers exist.		
RIGHT SOLUTIONS	RIGHT PART	NER

(V

PUTURE-PLUS ENVIRONMENTAL 6329 Redlands 2 of 9 EB2020621

Work Orde

Project Client Page

Analysis Holding Thing Compliance

If samples are identified below as have been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results. This report summarizes extraction / supparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction of an alysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

ing to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics Noes not guarantee a breach for all non-volatile parameters. Holding time for leachate methods (e.g. TCLP) vary azor 14 days, mercury 28 days & other metals 180 days. A recorded MyU Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and and Styrene are not key analytes of interest/concern. /inv/ Chloride of interest. should be verified in case the reported breach is a false positive or Holding times for VOC in soils vary according to analytes

	_		_																							-				
n holding time.		Evaluation		>						>									>											
breach ; 🗸 = Withii	Analysis	Due for analysis		12-Aug-2020						02-Sep-2020									02-Sep-2020									(0	2	
: × = Holding time		Date analysed		12-Aug-2020						06-Aug-2020									06-Aug-2020			<	~		((7	()	0		
Evaluation		Evaluation								-										~	(2		$\left \right\rangle$	>				
	raction / Preparation	Due for extraction		I						-						(((<		2		_	7							
	Ext	Date extracted		I						!	<	\langle																		
	Sample Date			05-Aug-2020				~	0	05-Aug-2020	2/0	ストリア		う	>				05-Aug-2020											
イ//		$\langle / / \rangle \langle \langle \rangle$		$\langle (\bigcirc) \rangle$						>																				
	~			CISW2,	CISW4,	Rinstate,	SWQA			GW2,	GW5,	CISW1,	CISW3,	CISW5,	Blank,				GW2,	GW5,	CISW1,	CISW3,	CISW5,	Blank,						
Matrix: WATER	Method	Container / Client Sample ID(s)	EA025: Total Suspended Solids dried at 104 ± 2°C	iear Plastic Bottle - Natural (EA025H) CISW1,	CISW3,	CISW5,	Blank,	ED041G: Sulfate (Turbidimetric) as SO4 2- by DA	lear Plastic Bottle - Natural (ED041G)	GW1,	GW3,	GW6,	CISW2,	CISW4,	Rinstate,	SWQA	ED045G: Chloride by Discrete Analyser	lear Plastic Bottle - Natural (ED045G)	GW1,	GW3,	GW6,	CISW2,	CISW4,	Rinstate,	SWQA					

U

	Iding time.		valuation		>					>						>						>								
4	reach ; ✓ = Within ho	Analysis	Due for analysis E		02-Sep-2020					01-Feb-2021						02-Sep-2020						02-Sep-2020						0	02	Z
	<pre>x = Holding time br</pre>		Date analysed		07-Aug-2020				-	07-Aug-2020						10-Aug-2020						11-Aug-2020			((72	6	07	ר ע	
	Evaluation:		Evaluation																				C	Z		>				
		raction / Preparation	Due for extraction																(5		7						
		Extr	Date extracted		ł					1											>	1								
		Sample Date			05-Aug-2020					05-Aug-2020			6	6	$\frac{1}{2}$	acoz-6MY-to	> > ,	> '				05-Aug-2020								
									~~~//						>															
DNMENTAL				Ę	Color Davie	Clewr,	CISW5, Plant	biarik,	>	GW2,	GW5, CISW1,	CISW3,	CISW5, Blank,			GW2,	GW5,	CISW1,	CISW5,	Blank,		GW2.	GW5,	CISW1,	CISW3, CISM5	Blank,				
3 of 9 EB2020621 : FUTURE-PLUS ENVIRC : 5329 Rediands			ample ID(s) / </</td <td>d Major Cations</td> <td>- Nitric Acid; Filtered (ED093-)</td> <td></td> <td></td> <td></td> <td>d Metals by ICP-MS</td> <td>- Nitric Acid; Filtered (EG020A-F</td> <td></td> <td></td> <td></td> <td></td> <td>d Mercury by FIMS</td> <td>- Nitric Acid; Filtered (EG035F)</td> <td></td> <td></td> <td></td> <td></td> <td>a as N by Discrete Analyser</td> <td>- Sulfuric Acid (EK055G)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	d Major Cations	- Nitric Acid; Filtered (ED093-)				d Metals by ICP-MS	- Nitric Acid; Filtered (EG020A-F					d Mercury by FIMS	- Nitric Acid; Filtered (EG035F)					a as N by Discrete Analyser	- Sulfuric Acid (EK055G)								
Page Work Orde	Matrix: WATER	Method	Container / Client Sc	ED093F: Dissolved	Clear Plastic Bottle GW1, GW3,	GW6, CISW2,	CISW4,	Rinstate, SWQA	EG020F: Dissolved	GW1, GW1,	GW3, GW6,	CISW2,	CISW4, Rinstate,	SWQA	EG035F: Dissolved	Clear Plastic Bottle GW1,	GW3,	GW6,	CISW4,	Rinstate, SWQA	EK055G: Ammonia	Clear Plastic Bottle GW1.	GW3,	GW6,	CISW2,	Rinstate,	SWQA			

	1	U
<	-	
		4

Page April 1 April 9								<
Work Ordet E82020621 Client - UNURE-PLUS ENVIRONMEN Project : 5329 Rediands	NTAL							ALS
Matrix: WATER					Evaluation:	<pre>x = Holding time</pre>	breach ; < = Withi	holding time.
Method		Sample Date	Ext	raction / Preparation			Analysis	
Container / Client Sample ID(5) ~ / / > <			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EK057G: Nitrite as N by Discrete Analyser								
	and a	05-Aug-2020	ł			06-Aug-2020	07-Aug-2020	>
GW3,	(SME)							
GW6, CISW2	CIENT,							
CISW4,	clsW5,							
Rinstate,	Blank,							
SWQA								
EK059G: Nitrite plus Nitrate as N (NOX) by Discrete Anal	Ilyser							
Glear Plastic Bottle - Sulturic Acid (EK059G) GW1	GW2	05-Aug-2020				11-Aug-2020	02-Sep-2020	`
GW3,	GW5,	1				1		•
GW6,	CISW1,							
CISW2,	CISW3,							
CISW4,	CISW5,	6						
Kinstate, SWDA	blank,	(						
EK061G: Total Kieldahl Nitrogen Bv Discrete Analyser		1 {						
Clear Plastic Bottle - Sulfuric Acid (FK061G)	~		<					
	CISW2,	202-64A-202	ATAug-2020	02-Sep-2020	>	11-Aug-2020	02-Sep-2020	>
CISW3,	CISW4,							
CISW5,	Rinstate,							
Blank,	SWQA	>						
EK067G: Total Phosphorus as P by Discrete Analyser				G		-		
Clear Plastic Bottle - Sulfuric Acid (EK067G)	CISINO	05-4110-2020	11-4110-2020	02-Sen-2020		11-4110-2020	02-Sen-2020	
CISW3	CISW4				, /	5		
CISW5,	Rinstate,			2	_			
Blank,	SWQA				(			
Clear Plastic Bottle - Sulfuric Acid (EK067G)					C	2		
GW1,	GW2,	05-Aug-2020	12-Aug-2020	02-Sep-202	2	72-Aug-2020	02-Sep-2020	>
GW3, CME	GW5,					(		
GWD						Ç		
					~ >	() 75		
						$\left( \begin{array}{c} \gamma \\ \gamma \\ \gamma \end{array} \right)$		
						0	(0	
						7	( ]	
							Z	
							)	

ALS	n holding time.		Evaluation		>		>				>			
$\sim$	breach ; < = Withi	Analysis	Due for analysis		02-Sep-2020		02-Sep-2020				07-Aug-2020			
	× = Holding time		Date analysed	-	07-Aug-2020		11-Aug-2020			-	07-Aug-2020			
	Evaluation:		Evaluation		1									
		action / Preparation	Due for extraction		1									
		Extra	Date extracted	-	1						1	<	$\sum_{i=1}^{n}$	
		Sample Date		-	05-Aug-2020		05-Aug-2020				06-Aug-2020	22/20	シーア	
						115 S			~~/././ ///////////////////////////////			>		
SONMENTAL				Ę	Blank,	otometric)	CISW2,	CISW4, Rinstate,	SWQA		CISW2,	CISW4, Rinstate,	SWQA	
Page Work Ordec : 5.019 Client Client Project : 6329 Rediands		Method	container / Client Sample ID(3)	EP005: Total Organic Carbon (TOC) 🔨	Amber TOC Vial - Sulfuric Acid (EP005) GW1, GW6, GW6, CISW2, CISW4, Rinstate, SWQA	EP026SP: Chemical Oxygen Demand (Spectrophd	Clear Plastic Bottle - Sulfuric Acid (EP026SP) CISW1,	CISW3, CISW5,	Blank,	EP030: Biochemical Oxygen Demand (BOD)	BOD Bottle Unpreserved (EP030) CISW1,	CISW3, CISW5,	Blank,	

# Quality Control Carafyleter Frequency Compliance

The following report summaises the fineduency of samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

				:	:			:
				Evaluation		ntrol trequency r	not writhin specification ; V = Quality Control frequency writhin specified	cation
Quality Control Sample Type	Method	S C	unt	Activel	Rate (%)	Evaluation	Quality Control Specification	
		2	Vennal	Actual	EXPECTED			
Laboratory Duplicates (DUP)		c	ç	10.00	00.01			
Ammonia as N by Discrete analyser	EK055G	N	70	10.00	10.00	>		
Biochemical Oxygen Demand (BOD)	E2030	'n	.28	10.71	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Chemical Oxygen Demand (COD) (Spectrophotometric)	/EP02025	2	18	11.11	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	(z) X	18	11.11	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035	2	20	10.00	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	a a	19	10.53	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093		20	10.00	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G		20	10.00	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	2	- AL	11.76	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	2		11.76	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Suspended Solids (High Level)	EA025H	7	92	10.00	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	ო	22	13.64	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Total Organic Carbon	EP005	2	13	15.38	10.00	>	NEPM 2013 B3 & ALS QC Standard	
Total Phosphorus as P By Discrete Analyser	EK067G	5	39	Les a	V10.00	>	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Ammonia as N by Discrete analyser	EK055G	-	20	5:00	5,00	>	NEPM 2013 B3 & ALS QC Standard	
Biochemical Oxygen Demand (BOD)	EP030	7	28	2.14	5,00	>	NEPM 2013 B3 & ALS QC Standard	
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	2	18	11.11	( 09'0)	~	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	0	18	11.11	0.00	X.	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	-	20	5.00	5.00	$\widehat{\boldsymbol{\zeta}}$	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	-	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard	
Major Cations - Dissolved	ED093F	-	20	5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard	
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	-	20	5.00	5.00	1	WERW 2013 B3 & ALS QC Standard	
Nitrite as N by Discrete Analyser	EK057G	-	17	5.88	5.00	> >	NERM 2013 B3 & ALS QC Standard	
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	0	17	11.76	10.00	>	NEPM 2013-B3 & ALS OC Standard	
Suspended Solids (High Level)	EA025H	9	20	15.00	15.00	>	NEPM 2018 B& ALS &C Standard	
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	22	9.09	5.00	>	NEPM 2013 83 & AL& OC Standard	
Total Organic Carbon	EP005	2	13	15.38	10.00	>	NEPM 2013 B3 & AVS QOSIMUTARD	
Total Phosphorus as P By Discrete Analyser	EK067G	ç	39	7.69	5.00	>	NEPM 2013 B3 & ALSOC Standard	
Method Blanks (MB)								
Ammonia as N by Discrete analyser	EK055G	-	20	5.00	5.00	>	NEPM 2013 B3 & ALS QC \$tardayd	
Biochemical Oxygen Demand (BOD)	EP030	2	28	7.14	5.00	>	NEPM 2013 B3 & ALS QC Stangard	
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP	~	18	5.56	5.00	>	NEPM 2013 B3 & ALS QC Standard	
Chloride by Discrete Analyser	ED045G	-	18	5.56	5.00	>	NEPM 2013 B3 & ALS QC Standard	
Dissolved Mercury by FIMS	EG035F	-	20	5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard	
Dissolved Metals by ICP-MS - Suite A	EG020A-F	-	19	5.26	5.00	>	NEPM 2013 B3 & ALS QC Standard	



	U
<	
	C

Page

Page 2.019 Nork Ordes 2.019 Client 2.2020621 Project 2.0329 Redlands							
				Evaluation	n: × = Quality Co	ontrol frequency	not within specification ; $\checkmark$ = Quality Control frequency within specification.
Quality Control Sample Typ		S	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Method Blanks (MB) - Continued							
Major Cations - Dissolved	ED093F	٦	20	5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	-	20	5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	-	17	5.88	5.00	>	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	<b>ED041G</b>	-	17	5.88	5.00	>	NEPM 2013 B3 & ALS QC Standard
Suspended Solids (High Level)	E 025H	-	20	5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK961G	2	22	9.09	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	/ LEPOON	-	13	7.69	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	Ekoe7c	60	39	7.69	5.00	>	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Ammonia as N by Discrete analyser	EKOSSO		20	5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Chemical Oxygen Demand (COD) (Spectrophotometric)	EP026SP		18	5.56	5.00	>	NEPM 2013 B3 & ALS QC Standard
Chloride by Discrete Analyser	ED045G		18	5.56	5.00	>	NEPM 2013 B3 & ALS QC Standard
Dissolved Mercury by FIMS	EG035F	)	202	5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	<b>&gt;</b> -	(61	5.26	5.00	>	NEPM 2013 B3 & ALS QC Standard
Nitrite and Nitrate as N (NOx) by Discrete Analyser	EK059G	-		5.00	5.00	>	NEPM 2013 B3 & ALS QC Standard
Nitrite as N by Discrete Analyser	EK057G	-	12	588	5.00	>	NEPM 2013 B3 & ALS QC Standard
Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	ED041G	-	17	5:08	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Kjeldahl Nitrogen as N By Discrete Analyser	EK061G	2	22	>/ روست )	5.00	>	NEPM 2013 B3 & ALS QC Standard
Total Organic Carbon	EP005	1	13	69.7	~ E. E.	>	NEPM 2013 B3 & ALS QC Standard
Total Phosphorus as P By Discrete Analyser	EK067G	с	39	2) 6 <u>8</u> .7	5,60	>	NEPM 2013 B3 & ALS QC Standard
				7			
					$\sim$	<	
						(	
					)		
						>	
						$\rightarrow$	

Z



shed internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house st. The following report provides brief descriptions of the analytical procedures employed for results reported in the in the Method Descriptions	Method Descriptions	In house: Referenced to APHA 2540D. A gravimetric procedure employed to determine the amount of `non-filterable` residue in a aqueous sample. The prescribed GFC (1.2um) filter is rinsed with deionised water, oven dried and weighed prior to analysis. A well-mixed sample is filtered through a glass fibre filter (1.2um). The residue on the filter paper is dried at 104+/-2C. This method is compliant with NEPM Schedule B(3)	In house: Referenced to APHA 4500-SO4. Dissolved sulfate is determined in a 0.45um filtered sample. Sulfate Then are converted to a barium sulfate suspension in an acetic acid medium with barium chloride. Light Absorbance of the BaSO4 suspension is measured by a photometer and the SO4-2 concentration is determined by somparison of the reading with a standard curve. This method is compliant with NEPM Schedule B(3)	In huse: Referenced to APHA 4500 Cl - G.The thiocyanate ion is liberated from mercuric thiocyanate through seques traded of mercury by the chloride ion to form non-ionised mercuric chloride in the presence of ferric ions the florated mercury and the sequestrate to the sequestrate which is measured at 480 nm APHA seal method 2 01744.	In house: Referenced APHA 3120 and 3125; USEPA SW 846 - 6010 and 6020; Cations are determined by either ICP-AES of ICP-MS techniques. This method is compliant with NEPM Schedule B(3) Sodium Adsorption Ratio is calculated from Cat'MS and Na which determined by ALS in house method QWI-EN/ED093F. This method is compliant with NEPM Schedule B(3) The NEPM Schedule B(3) This method is compliant with NEPM Schedule B(3) The NEPM Schedule B(3) This method is compliant with NEPM Schedule B(3) The NEP	In house: Referenced to APHA 3(25,USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technologe ditijzes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass speedrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measvement by a distrete dynode ion detector.	In house: Referenced to AS 3550, APHA 3112 Mg, B r low-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS/s an automated filameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic meraury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).	In house: Referenced to APHA 4500-NH3 G Ammonia is determined by triget polorimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)	In house: Referenced to APHA 4500-NO2- B. Nitrite is determined by direct comuniment by Discrete Analyser. This method is compliant with NEPM Schedule B(3)	In house: Referenced to APHA 4500-NO3- F. Nitrate is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimeex and result for Nitrate calculated as the difference between the two results. This method is compliant with NEPM Schedule 30.	In house: Referenced to APHA 4500-NO3- F. Combined oxidised Nitrogen (NO2+NO3) is determined by Chemical Reduction and direct colourimetry by Discrete Analyser. This method is compliant with NEPM Schedule B(3)
oed from establisl by client request brovided withi	Matrix	WATER	AND THE R	WARER	WATER	WATER	WATER	WATER	WATER	WATER	WATER
Bivision have been develo documented standards or fors have been develoned a	Sethod		ED041G	ED045G	ED093F	EG020A-F	E G035F	EK055G	EK057G	EK058G	EK059G
I de la contraction de la cont	Analytical Methods	Suspended Solids (High Level)	Sulfate (Turbidimetric) as SO4 2- by Discrete Analyser	Chloride by Discrete Analyser	Major Cations - Dissolved	Dissolved Metals by ICP-MS - Suite A	Dissolved Mercury by FIMS	Ammonia as N by Discrete analyser	Nitrite as N by Discrete Analyser	Nitrate as N by Discrete Analyser	Nitrite and Nitrate as N (NOx) by Discrete Analyser
ALS											
-----------------------------------------------------------	---------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------	----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	---------------------	----------------------------------------------------------------------------------------------------------------	--	
	Method Descriptions	In house: Referenced to APHA 4500-Norg D (In house). An aliquot of sample is digested using a high temperature Kjeldahl digestion to convert nitrogenous compounds to ammonia. Ammonia is determined colorimetrically by discrete analyser. This method is compliant with NEPM Schedule B(3)	In house: Referenced to APHA 4500-Norg / 4500-NO3 This method is compliant with NEPM Schedule B(3)	In house: Referenced to APHA 4500-P H, Jirka et al, Zhang et al. This procedure involves sulphuric acid digestion of a sample aliquot to break phosphorus down to orthophosphate. The orthophosphate reacts with ammonium molybdate and antimony potassium tartrate to form a complex which is then reduced and its concentration measured at 880nm using discrete analyser. This method is compliant with NEPM Schedule B(3)	In house: Referenced to APHA 5310 B, The automated TOC analyzer determines Total and Inorganic Carbon by A cell. TOC is calculated as the difference. This method is compliant with NEPM Schedule B(3)	In house: Referenced to APHA 5220 D. Samples are digested with a known excess of an acidic potassium archydmate solution using silver sulfate as a catalyst. The chromium is reduced from the Cr (VI) oxidation state to the Cr (VI) state by the oxygen present in the organic material. Both of these chromium species are coloued and absorb the visible region of (400nm & 600nm) the spectrum. The oxidisable organic matter can be calculated interfies of oxygen equivalents.	In house: Referenced to APHA 5210 B. The 5-Day BOD test provides an empirical measure of the oxygen consumption capacity of a given water. A portion of the sample is diluted into oxygenated, nutrient rich water, and a seed added to begin biological decay. The initial dissolved oxygen content is measured, then the bottle is sealed and incubated for the days. The remaining dissolved oxygen is measured, and from the difference, the demand for oxygen, by bub displaydecay, to determined. This method is compliant with NEPM Schedule B(3).	Method Descriptions	In house: Referenced to APHA 4500 Morg D: APHA 4500 P - H. This method is compliant with NEPM Schedule B(3)		
	Matrix	WATER	WATER	WATER	May R	KLAYTER /	WATER	Matrix	WATER		
ONMENTAL	Method	EK061G	EK062G		EP005	EP026SP	EP030	Method	EK061/EK067		
Page 9.019 Work Order 5.0019 Client 5.0329.7edlands	Analytical Methods	Total Kjeldahl Nitrogen as M By Discrete Analyser	Total Nitrogen as N (TKN + Nox) By	Total Phosphorus as P By Discrete Analyser	Total Organic Carbon	Chemical Oxygen Demand (COD) (Spectrophotometric)	Biochemical Oxygen Demand (BOD)	Preparation Methods	TKN/TP Digestion		



Appendix G. Fieldnotes & Calibration Certificate 26 August 2020 Coochiemudlo Island Former Landfill -Appendix G

particles, no organic particle ochicle and odowi lange 22 Comments Tanin Tannin, Rediands Landfills - Judy Holt COOCH i Envirol 10 v=∏r² x L x 1000 Droganc Clean odouri Redox (mV) 28 68 66 56 6.46 4.91 6.18 4.91 Hd Dissolved Oxygen (ppm) 5329 64.4/4.35 36.0/2.52 421/5.35 S2.4/S.62 TDS (ppm) 422 2,55 55.3 Future Plus Environmental - Groundwater Quality Monitoring Form 69 Job No.: Site Conductivity  $\bigcirc$ 96.96 (uS/cm) 284 418 681 Turbidity (NTU) 0.64 27.2 r F Temp. (°C) 1-1-1 0.1 18. x Volume Purged ì Well Volume 1 - Contractor 1 Depth -1 1 -SWL 1 ) -20 15123 15122 CISWS CISWI Ø. Site 5 RCC Time Client: Date:

Revision Date: 20/07/2016 S:\Business\Procedures\Groundwater Quality Monitoring form.xls

Ż

4

O

	v=∏r² x L x 1000	ochiemudlo	x (mV) Comments	7 Clear, Small	0 particles, no	of odour	200	52		4 Clear, singu	9 SUSPENDED	Solids no odour	7 Sulphuric	8 adoir,	susperided	Solicas	Orange,	+ turbid no	2 odow			Clear an alan	AL CONTINUED	Survey proposed	0	2 Dry @ 48	40		6 NOA	Acarde organic	
	5329	s Landfills - J <del>udy Holt</del> $C\alpha$	/ed pH Redov	34 6.55 2.	101 4.61 13	101 101 101 101 101 101 101 101 101 101	13 T 13 13	Sy 4.59 13		69 5.84 9	2.87 6.33 7		.45 6.46 3-	2.8 6.69 -5			01 20.9 85%	2.07 4.87 4L	-15 15.04 28	85 4.93 37		2/2/2/200	1 0 0 0 W.Z	II- VSR II		2- 6/2/2	2.13 5.84211-1		+43 5.47 C	7	
toring Form	Job No.:	Site Redlands	V TDS (ppm) Dissolv	123,8 40.5h.	138 42.5/3	154 32,43	1/1 28.8/2	159 37.7/2		285 33.2/6	309 33.6/		SI4 24.2/2	10.92 OLT			78.6 28.6/3	735.4 28.5%	56.8 19.1/2		V // N	111 6 02	1400 10001 J	1125 1122	1.4300K 19-312	1374 5.6/	1351 25.9/		219 37.8/	uality Monitoring form.xls	
Groundwater Quality Moni			Turbidity Conductivit (NTU) (uS/cm)	6.9 2.06	23.7 240	26.1 259	0000 1.1	8:3 279		1.9 476	9.5 501		228 128	120% 749		x(0)x	1658 4 135/3	946 NOCI	876 94.9	1558 29.8		0000 0000	28.8 2201	PULC C C C Z	33.6 2.23mS	521 2096	208 2074		10.1 362	rocedures\Groundwater Q	
ure Plus Environmental -			lume Temp. (°C)	1 18,1	0 19.3	22.0	50 22-13 10 72-5	23.4	No Sector	(//JANS	3 1/2115	mple / / A	18.8	2 19.6 1	mple		1 16.7	1.1.	20.4	26.3	mples	F ()	1,01	19.6	0 20.4	-0 20.2	8 22.7	mple)	2 18.2	0/07/2016 S:\Business\P	
Fut			Well Volume	S-19-8					ANY A	9.17		(20/	8.03	5	(SOU		39.69	-		03	(5a		C1.00 0			5	+	(Sa	- 18	Revision Date: 20	
		The	sWL Pepth	3.59 2.66						1.44 3			2.03 3.34				4.67 11.42						8 16.23						>		
	RCC	5/08/1	me	GWS						GWI			GW2				Gw3						GWO						CISWY		
	Client:	Date:	μ.																											Page 148	of 150



27, JULY , 2020 Page 1 o 2 CERTIFICATE OF CALIBRATION Customer Name : FUTURE PLUS ENVIRONMENTAL Product Code : 90FLT Part Number : 126105 Serial No : U9332 Certificate NO: 14826 ______ Battery : Battery = 7.58 V Battery = 7.67 V at 210mA charge current Battery is ok. pH : Sensor tested with meter in buffers at ... -----_____ Standard Value | Calibration Result _____ ____ Ph6.88 at 20.7oC | 0.34 pH Asymmetry _____ pH4.00 at 20.7oC | 94.6% Slope Sensor Asymmetry and Slope cal bration values are within allowable tolerances. _____ _____ Conductivity : Sensor tested with meter in standard solutions... _____ Standard Value Calibration Result ______ Zero (in Air) 0.0 uS/cm Zero _____ 36 ppK k = 12.5Sensor Zara and Span calibration values are within allowable tolerances _____ Temperature : Calibrated Temperature section of Conductivity sensor... ____ _____ Caribration Value | Calibration Result | | 20.7 oC .ow: Ambient | Offset = 1.8 oC -----38.0 oC | 38.2 oC Nigh: | SPAN =101.1% Sensor Offset value IS within allowable tolerances. TPS PTY LTD Unit 1/8 Phone Australia (07) 32 058 027 Web tps.com.au **Bult Drive** International 61 7 32 058 027 Email sales@tps.com.au A.B.N. No 30 009 773 371 Brendale, QLD,

AUSTRALIA, 4500



Т	PS	
	Page 2 of 2	Ð
Dissolved Ox	xygen : Sensor tested with meter	~
	Standard Value   Calibration Result	
	0.0 % Sat   Zero = 4.8% (Na2SO3)	
	100.0 % Sat   Span = 83.1% (Air)	
	Sensor Zero and Span calibration values are within allowable tolerances.	
Redox	: Sensor tested with meter in standard solutions	
	Standard Value   Calibration Result	
	Zobell (20.8 oC)   223 mV	
	Sensor values are within allowable tolerances.	
Turbidity	: Sensor tested with meter in standard solutions	
	Standard Value   (Qalibration Result	
	Zero (Pure Water)   0 NTU	
	90 NTU 90 NTU	
	90 NTU   Span = 106.3%	
	900 NTU   900 NTU	
	900 NTO   Span = 100.2 %	
	Sensor tero and Span calibration values are within allowable tolerances.	
Keypad	: All keypad functions tested. All keys OK.	
Tested by	✓: J.₩	
Issue Pate	: 27, JULY , 2020	
A.B.N. No 30 009 773	TDUnit 1 / 8PhoneAustralia(07) 32 058 027Webtps.com.auBult DriveInternational61 7 32 058 027Emailsales@tps.com.auBrendale, QLD, AUSTRALIA, 4500	1